THE THEOREMS OF LEDERMANN AND OSTROWSKI
ON POSITIVE MATRICES

By ALFRED BRrRAUER

A square matrix A = (a,,) of order n is called positive if all its elements are
positive. 0. Perron [6] proved that the absolute greatest characteristic root of
a positive matrix is positive and greater than the moduli of all the other roots.
G. Frobenius [2] gave another proof of this theorem. Moreover, he obtained
the following results. The absolute greatest root w of a positive matrix is simple.
The coordinates of a characteristic vector belonging to w can be chosen all as
positive numbers. Let ¢ = max a,, be the maximum of the elements of the
main diagonal of 4. Set

RK=Zan (V=1)2y"'>n)}
p=1
R = maxR, and r = minR, .

Frobenius proved that o satisfies the inequalities

(1 R>w>r
and
(2 w > a.

These inequalities follow at once from the fact that the system of linear
equations

(3) W = Zavkyv O‘ =1,2 ... 771')

y=1

has a positive solution. Adding the equations we obtain

Zwy)';'Z ayxyv’-:Z%Z%x'—’-Z%RuSRz?Jv-
A=1 A=1 p=1 v=1 A=1 y=1 y=1

Dividing by D 2., y, we obtain < R. Similarly we can prove that w > .
Assume that ¢ = a,, . Writing the k-th of the equations (3) in the form

@ @= = = e = 3 a,

v#k

we obtain (2) since the right hand of (4) is positive. (See O. Taussky [7].)
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