REMARK ON A PAPER OF O. G. OWENS

By L. E. Payne and H. F. Weinberger

In a recent paper [1] it was shown by an ingenious but rather involved proof that if $u(x, y, t)$ is the solution of the wave equation

$$
\begin{equation*}
u_{t t}=u_{x x}+u_{y y} \tag{1}
\end{equation*}
$$

taking the values of a homogeneous polynomial $\Psi(x, y)$ on the characteristic cone ($t^{2}-x^{2}-y^{2}=0$), then u is a homogeneous polynomial in (x, y, t) of the same degree as Ψ.

Our purpose is to give a simple proof of this by exhibiting $u(x, y, t)$ explicitly. It is clearly sufficient to solve the problem for the value $\Psi=x^{p} y^{q}$.

It is well known [2] that any function of the form

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{p+a+\frac{1}{2}} \frac{\partial^{p+q}}{\partial x^{p} \partial y^{q}}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \tag{2}
\end{equation*}
$$

is a spherical harmonic, that is, a homogeneous polynomial of degree $(p+q)$ satisfying Laplace's equation

$$
\begin{equation*}
u_{x x}+u_{y y}+u_{z z}=0 \tag{3}
\end{equation*}
$$

It is also well known that if in a solution of (3) analytic in z at $z=0$ one puts $z=i t$, the resulting function of x, y, and t satisfies equation (1). If this is done with the function (2), one obtains, except for a constant factor, the solution

$$
\begin{equation*}
\left(t^{2}-x^{2}-y^{2}\right)^{p+\alpha+\frac{1}{2}} \frac{\partial^{p+q}}{\partial x^{p} \partial y^{\alpha}}\left(t^{2}-x^{2}-y^{2}\right)^{-\frac{1}{2}} . \tag{4}
\end{equation*}
$$

One easily sees that this is again a homogeneous polynomial of degree $p+q$, and that when $t^{2}-x^{2}-y^{2}=0$ it takes the values $\left[(2 p+2 q)!2^{-p-\alpha} /(p+q)!\right]$ $x^{p} y^{\text {a }}$. One needs only divide the function (4) by the coefficient of this monomial to obtain the solution of (1) taking the values $x^{p} y^{a}$ on the characteristic cone. It is easily seen that (4) is even in t and has the same parity in x and y as $x^{p} y^{a}$.

The extension to higher dimensions is obvious.

References

1. O. G. Owens: Polynomial solutions of the cylindrical wave equation, this Journal, vol. 23(1956), pp. 371-384.
2. E. W. Hobson: The Theory of Spherical and Ellipsoidal Harmonics, Cambridge, 1931, p. 131.

Institute for Fluid Dynamics and Applied Mathematics
 University of Maryland

Received November 7, 1956. This research was supported by the U. S. Air Force through the Office of Scientific Research of the Air Research and Development Command.

