A METHOD FOR APPROXIMATING
 THE ZEROS OF ANALYTIC FUNCTIONS

By Stephen Kulik

Introduction. In this paper a zero a of an analytic function $f(z)$ is determined as the limit of a function $F_{n}(z)$:

$$
\begin{equation*}
a=\lim F_{n}(z), \quad \text { as } n \rightarrow \infty, \tag{1}
\end{equation*}
$$

where z may be any number, which is closer to the zero, a, than to any other zero of $f(z)$. The function $F_{n}(z)$ has the form $z-f(z) Q_{n-1} / Q_{n}$ or $z-f(z) / Q_{n}^{1 / n}$ as is given in (10) and (11). The function $Q_{n}=Q_{n}(z)$ is given in (5). It is a homogeneous function of $f(z)$ and its $n-1$ first derivatives and depends also on another appropriately chosen function, $\phi(z)=\phi(z ; u, v, \cdots, t)$.

The algorithm,

$$
\begin{equation*}
z_{k+1}=F_{n}\left(z_{k}\right), \tag{2}
\end{equation*}
$$

can be used for successive approximations to a zero of $f(z)$. It is only a first order iteration formula in general case. However, the convergence to the zero is at least of order n or $n+1$ in particular cases, depending on the multiplicity of the zero to be approximated and the choice of $\phi(z)$ and its parameters.

The general method. Let $f(z)$ be a function analytic within and upon the circle C, having zeros a_{i} in the defined area. Let $\phi(z)=\phi(z ; u, v, \cdots, t)$ be another such function, which may depend on a number of parameters. If $\phi(z)$ has a zero in common with that zero of $f(z)$ which we intend to evaluate, it has this zero with multiplicity less than $f(z)$ does. Otherwise, $\phi(z)$ is an arbitrary function.

We may write

$$
\begin{equation*}
\phi(z) / f(z)=\Sigma\left(z-a_{i}\right)^{-m_{i}} R_{1 i}(z)+\psi_{1}(z), \tag{3}
\end{equation*}
$$

where the sum has a finite number of terms and is taken over all the zeros a_{i} of $f(z) / \phi(z)$ within and upon the circle C, their multiplicities being $m_{i} ; R_{1 i}(z)$ is a polynomial in $z-a_{i}$ of degree less than m_{i} with constant term distinct from zero; and $\psi_{1}(z)$ is analytic within and upon C.

On differentiating both members of (3) $n-1$ times and dividing by $(n-1)$! $(-1)^{n-1}$ we get

$$
\begin{equation*}
Q_{n} /[f(z)]^{n}=\Sigma\left(z-a_{i}\right)^{-n-m_{i}+1} R_{n i}(z)+\psi_{n}(z), \tag{4}
\end{equation*}
$$

Received June 26, 1956. Sponsored by the OOR, U. S. Army.

