LOCALLY COMPACT TRANSFORMATION GROUPS

By Robert Ellis

Let X be a locally compact Hausdorff space, T a group of homeomorphisms of X, and π the mapping of $X \times T$ into X such that $\pi(x, t) = xt$ for all $x \in X$ and $t \in T$. The purpose of this paper is to prove that if T is provided with a locally compact Hausdorff topology such that π is unilaterally continuous and the maps $t \to st$ and $t \to ts$ of T into T are continuous for all $s \in T$, then π is continuous. Using this result, it is shown that if X is a locally compact Hausdorff space with a group structure such that the maps $x \to xy$ and $x \to yx$ of X into X are continuous for all $y \in X$, then X is a topological group.

In the sequel the following notation will be used. Let X and Y be topological spaces. Then C(X, Y) will denote the set of continuous maps of X into Y. The symbols $C_{\nu}(X, Y)$ and $C_{\nu}(X, Y)$ will denote the set C(X, Y) provided with the topologies of pointwise convergence and uniform convergence on compact sets respectively. [1] If S is a topology on X and $A \subset X$, then $A \wedge S$ will denote the topology induced on A by S. Let $T \subset C(X, Y)$, then $\pi: X \times T \to Y$ will denote the map such that $\pi(x, t) = xt$ for all $x \in X$ and $t \in T$.

Let $T \subset C(X, X)$ and let S be a topology on T. Then (T, S) will be called admissible if the following conditions are satisfied.

- (i) $T^2 \subset T$.
- (ii) If $t \in T$, then t is onto.
- (iii) The topology S is locally compact and S $\supset T \land C_p(X, X)$.
- (iv) The maps $t \to ts$ and $t \to st$ of T into T are continuous for all $s \in T$.
- 1. In this section it is assumed that X is a compact metric space, (T, S) admissible, and G a group of homeomorphisms of X such that $G \subset T$ and cls G = T.

Lemma 1. T is first countable.

Proof. Let $t \in T$ and let V be a compact neighborhood of t. Since X is compact metric, it is separable, and so there exists a countable subset E of X with els E = X. Now $V \wedge S \supset V \wedge C_p(X, X) \supset V \wedge C_p(E, X)$, and since $C_p(E, X)$ is Hausdorff and $V \wedge S$ is compact, these three topologies coincide. However, $C_p(E, X)$ is metrizable and thus so is $V \wedge S$. The proof is completed.

LEMMA 2. The set A consisting of the one-one elements of T is residual.

Proof. Let $(V_n/n=1, \cdots)$ be a neighborhood base of the identity element e of T consisting of open sets. Set $A_n=[t/ts\ \epsilon\ V_n$ for some $s\ \epsilon\ T]$. Then A_n is open since (T, S) is admissible. Moreover $G\subset A_n$, because G is a group. Then for each n, A_n is an everywhere dense open set.

Received September 24, 1956.