THE SUMMABILITY FACTORS OF A FOURIER SERIES

By B. N. Prasad and S. N. Bhatt

1.1 Definitions. Let $\sum a_{n}$ be a given infinite series. The series $\sum a_{n}$ is said to be absolutely summable (A), or summable $|A|$, if $F(x)=\sum a_{n} x^{n}(|x|<1)$ is of bounded variation in $(0,1)$ [18], [20]. The sum is then $\lim _{x \rightarrow 1-\lambda} F(x)$.

Let the n-th Cesàro mean of order α of the sequences $\left\{s_{n}\right\}\left(s_{n}=\sum_{n=1}^{n} a_{v}\right)$ and $\left\{n a_{n}\right\}$ be denoted by s_{n}^{α} and t_{n}^{α} respectively. The series $\sum a_{n}$ is said to be absolutely summable (C, α), or summable $|C, \alpha|, \alpha>-1$, if the series

$$
\sum\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|
$$

is convergent [8], [13]. By virtue of the identity

$$
n\left(s_{n}^{\alpha}-s_{n-1}^{\alpha}\right)=t_{n}^{\alpha} \quad[13],[14]
$$

it follows that the summability $|C, \alpha|$ of $\sum a_{n}$ is the same thing as the convergence of the series $\sum n^{-1}\left|t_{n}^{\alpha}\right|$. It is known that summability $|C, r|, r>0$, implies also summability $|A|$, but not conversely [9].
The series $\sum a_{n}$ is said to be strongly summable (C, k), or summable [C, k], $k>0$, to the sum s, if

$$
\sum_{\nu=1}^{n}\left|s_{v}^{k-1}-s\right|=o(n)
$$

as $n \rightarrow \infty$ [21].
1.2. Let $f(t)$ be a periodic function with period 2π, and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
f(t) \sim \sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{1}^{\infty} c_{n}(t) \tag{1.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{1.2.2}
\end{equation*}
$$

Let

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\}
$$

and

$$
\varphi^{*}(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\} .
$$

Received April 13, 1956.

