A THEOREM OF HAMILTON: COUNTEREXAMPLE

By C. E. Capel and W. L. Strother

The following appears in a paper of O. H. Hamilton [1].
Theorem. If I_{n} is a topological n-cell, T is a continuous multi-valued transformation of I_{n} into a subset of itself such that for each point P of $I_{n}, T(P)$ is the boundary of a topological n-cell and M_{1}, M_{2}, and M_{3} are the subsets of I_{n} consisting of the points P which are respectively in the interior of $T(P)$, in $T(P)$, and in the exterior of $T(P)$, then (a) M_{2} is non-vacuous and closed, (b) $M_{1}+M_{2}$ and $M_{2}+M_{3}$ are each closed, (c) M_{1} and M_{3} are each open with respect to I_{n}; and if M_{1} and M_{3} are each non-vacuous, then M_{2} separates M_{1} from M_{3} in I_{n}.

The following is an example of a continuous multi-valued transformation T of a 2 -cell I_{2} into itself, with the image of each point being a 1 -sphere, such that M_{2} is null and M_{1} is a single point.

Using polar coordinates in the plane, let $I_{2}=\{(r, \theta) \mid 0 \leq r \leq 1\}$. For $0 \leq s \leq 1$, define $T(s, 0)$ as the set of all (r, θ) such that (1) $r=1$ or $r=1-s$ and $s \leq \theta \leq 2 \pi-s$, or (2) $1-s \leq r \leq 1$ and $\theta=s$ or $\theta=2 \pi-s$. For $0 \leq s \leq 1$ and $0 \leq \theta \leq 2 \pi$, define $T(s, \theta)$ to be the set $T(s, 0)$ rotated through the angle θ.

In the proof of the above theorem two auxiliary functions S and W are defined on I_{n} into itself, where $S(P)$ is $T(P)$ together with its interior and $W(P)$ is the closure of $I_{n}-S(P)$. (Presumably $W(P)$ was meant to be $T(P)$ together with the intersection of the exterior of $T(P)$ with I_{n}.) The difficulty lies in the statement that S and W are continuous, which is false.

Reference

1. O. H. Hamilton, A fixed point theorem for upper semi-continuous transformations on n-cells for which the images of points are non-acyclic continua, this Journal, vol. 14(1947), pp. 689-693.

University of Miami

Received August 29, 1956; presented to the American Mathematical Society November 30, 1956. This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command under contract No. AF 18(600)-1449.

