BOUNDS FOR EXPONENTIAL SUMS

By L. Carlitz and S. Uchiyama

1. Let $F(x)=a_{0} x^{r}+\cdots+a_{r}$ be a polynomial with integral coefficients and put

$$
S=\sum_{u=1}^{p} e^{2 \pi i F(u) / p}
$$

where p is a prime. Some years ago Mordell [4;67] noted the conjecture

$$
\begin{equation*}
|S| \leq(r-1) p^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

and remarked that it was presumably a consequence of the Riemann hypothesis proved by Weil [8] for the zeta-function of algebraic function fields. Indeed Hasse [3; 53] had indicated the connection in 1935.

In this note we wish to point out, in the first place, how (1) can be proved from Weil's result in a comparatively simple way. Since it is no more difficult, we consider the slightly more general situation in which the coefficients of $F(x)$ are numbers of the finite field $k=G F(q), q=p^{n}$. For $\alpha \varepsilon k$, define

$$
\begin{equation*}
e(\alpha)=e^{2 \pi i t(\alpha) / p}, \quad t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{n-1}} \tag{2}
\end{equation*}
$$

and let

$$
\begin{equation*}
S=\sum_{\alpha \& k} e(F(\alpha)) \tag{3}
\end{equation*}
$$

the summation extending over all numbers of k.
Let $K_{0}=k[x]$ denote the domain of polynomials in the indeterminate x with coefficients in k. Let $P=P(x)$ denote an irreducible polynomial in K_{0} of degree m. If $A=A(x)$ is an arbitrary polynomial in K_{0}, define $\rho(A, P)$ as the unique number of k such that

$$
\begin{equation*}
\rho(A, P) \equiv A+A^{q}+\cdots+A^{q^{m-2}} \quad(\bmod P) \tag{4}
\end{equation*}
$$

Thus the congruence $U^{\alpha}-U \equiv A(\bmod P)$ is solvable with $U \varepsilon K_{0}$ if and only if $\rho(A, P)=0$. Next define

$$
\begin{equation*}
\lambda(A, P)=e\{\rho(A, P)\}, \tag{5}
\end{equation*}
$$

with $e(\alpha)$ defined in (2). The definitions (4) and (5) are extended as follows. If M is an arbitrary polynomial in $K_{0}, M=P_{1} \cdots P_{\mathrm{h}}$, put

$$
\rho(A, M)=\sum_{i} \rho\left(A, P_{i}\right), \quad \lambda(A, M)=\prod_{i} \lambda\left(A, P_{i}\right) ;
$$

the P_{i} are irreducible polynomials, not necessarily distinct.
Received June 13, 1956.

