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Introduction. A theorem of A. Kneser [5" 183-191] implies that if the
differential equation

(i) x" + f(t)x 0

is non-oscillatory on 0 < < by virtue of the condition f(t) <_ O, then there
exists a principal solution x y(t) 0 which is unique up to constant factors
and has the property that if x x(t) is any non-principal solution, that is, any
solution linearly independent of y(t), then

(ii) y(t)/x(t) -- 0 as --in fact,

(iii) Y(t) _< Constant and

Furthermore,

(iv) dt/y2(t) o and dt/x2(t) <

It turns out that, whether or not f(t) <_ O, the assertions concerning (ii) and
(iv), but not (iii), are true whenever (1) is non-oscillatory. This fact was proved
in [6; 254-256]; cf. also [1; 703] and [3; 480-483], where the existence of the
proof in [6] was unfortunately overlooked. (As to the assertion (iii) when the
condition f(t) < 0 is dropped, cf. [2; 633-645].) The existence and properties
of a principal solution are easily transferred from (i) to an arbitrary non-oscilla-
tory, self-adjoint equation

(v) (p(t)x’)’ + f(t)x O, p(t) > O.

The object of this paper is to extend the notion of a principal solution x y(t)
belonging to a non-oscillatory, scalar equation (i) to that of principal solution
belonging to a non-oscillatory (cf. [8; 313]), self-adjoint system of equations, say

(vi) x" -4- F(t)x O,

where x is a vector and F(t) is an Hermitian matrix.
The results are known [10] in the analogue of the case treated by Kneser,

that is, when F F* is real and non-positive definite or, more generally, if
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