## IDEALS IN MULTIPLICATIVE SYSTEMS OF CONTINUOUS FUNCTIONS: A CORRECTION

By Paul Civin and Bertram Yood

The proof of Lemma 5.2 of [1] is in error. This necessitates some minor changes in that Lemma and the subsequent material of §5. To that end we say that a semi-group $B$ in $C$ is an exterior semi-group if every $g \varepsilon B$ is the limit of a sequence $\left\{g_{n}\right\}$ in $B^{c}$, sup $\left(g_{n}\right)$ compact and int $Z\left(g_{n}\right) \supset Z(g)$. If $B$ is dense in $C$ it is automatically an exterior semi-group.
5.2. Lemma. Let I be a T-ideal in an exterior semi-group B. Then $I=k h(I)$.

Let $g \varepsilon k h(I), g=\lim g_{n}$ as per assumption. For any integer $n$, $\sup \left(g_{n}\right)$ $\subset X-h(I)=X-h\left(I_{0}\right)=U(X-Z(f)), f \varepsilon I_{0}$ (see [1; 326] for notation). Thus there exist $f_{1}, \cdots, f_{n}$ in $I_{0}$ such that sup $\left(g_{n}\right) \subset \cup_{1}^{n}\left(X-A\left(f_{i}\right)\right)$. Let $\left\{e_{m}\right\} \varepsilon I_{0}, e_{m} \cup w \varepsilon B^{c}, w f_{j}=f_{j}, j=1, \cdots, r$. Since $w(t)=1, t \varepsilon \sup \left(g_{n}\right)$, $\lim _{m} e_{m} g_{n}=g_{n}$. Now $g_{n}=\lim h_{n, s}, h_{n, s} \varepsilon B$. Thus $e_{m} h_{n, m} \rightarrow w g_{n}=g_{n}$. Therefore $g_{n} \varepsilon I_{0}^{c}$ (closure in C) whence so is $g$. Since $g \varepsilon B, g \varepsilon I$.
5.3 Theorem. A semi-group B in C is normal, general Urysohn and exterior if and only if there is a one-to-one correspondence between the T-ideals I of B and the closed sets $F$ of $X$ such that if $I \leftrightarrow F$ then $I=k(F)$.

Assume the correspondence. By $[1 ; 330]$ it suffices to show $B$ is exterior. Let $g \varepsilon B, F=Z(g) . g \varepsilon k(F)$ which is a $T$-ideal. Thus $g=\lim g_{n}, g_{n} \varepsilon[k(F)]_{0}$. Thus sup $\left(g_{n}\right)$ is compact. Fix $n$. There exists a sequence $\left\{e_{m}\right\} \varepsilon[k(F)]_{0}, e_{m} \rightarrow$ $w \varepsilon B^{c}$ such that $w g_{n}=g_{n}$. Now int $Z\left(g_{n}\right) \supset Z(w)$. But $Z(w) \supset F$. Thus $B$ is exterior.

For the converse the argument remains as before with use of Lemma 5.2 as given above.

The first sentence in Theorem 5.4 should read as follows. Let $B$ be a general Urysohn and exterior semi-group. For Theorem 5.5 and Corollary 5.6 it should be assumed that the representation algebra $\pi(A)$ is exterior. The latter results still apply to the group algebra of a locally compact Abelian group since the representation algebras are dense and hence exterior.

## References

1. Paul Civin and Bertram Yood, Ideals in multiplicative systems of semi-groups, this Journal, vol. 23(1956), pp. 325-334.

University of Oregon

Received August 14, 1956.

