THE ORDER OF THE ZETA FUNCTION IN THE CRITICAL STRIP

By Emil Grosswald

In [2] use is made of the following
Theorem A (van der Corput). If $l \geq 3,2 L=2^{2}, \sigma=1-l /(2 L-2)$, $\left.\zeta(s)=O\left(t^{1 /(2 L-2)}\right) \log t\right)$.

This theorem has been proved only with the additional hypothesis that l is an integer, but in the statement of the theorem in [5], this hypothesis is not explicitly stated. Professor L. Schoenfeld has kindly called my attention to the necessity of justifying its use in [2] for non-integral l. In order to fill the gap, we give here a proof of the following Theorem 1 ; the proof uses a result of Min [3], but is, otherwise, essentially an elaboration of a result of [1].

Theorem 1. For arbitrary $l \geq 3$, let $2 L=2^{l}$, $\sigma=1-l /(2 L-2)$ and set $\lambda=[l]-1, g=l-[l]$. Then, for every $\epsilon>0, \zeta(s)=O\left(t^{\mu+\epsilon}\right)$, with $\mu=\alpha /(2 L-2)$ and (i) $\alpha \leq 1+\left(1+g-2^{g}\right) /\left(\lambda+2^{-\lambda}\right) \leq 1.0276$ for $l \geq 4$; (ii) $\alpha \leq\{59 l-7(2 L-2)\} / 138 \leq 1.0254$ for $3 \leq l \leq 4$; (ii) is equivalent to (iii) $\mu(\sigma) \leq(52-59 \sigma) / 138$ for $1 / 2 \leq \sigma \leq 5 / 7$.

Using (iii) instead of [5, Theorem 5.14] in [2], with $\sigma=\log 2 / \log 3$, one obtains $\mu \leq .10706$ and $c \leq \log 2 / \log 3+2 \mu \leq .8450$, instead of .8385 .

Proof of Theorem 1. With the integers $l_{2}=l_{1}+1=\lambda+2 \geq 4$, define $2 L_{i}=2^{l_{i}}, \sigma_{i}=1-l_{i} /\left(2 L_{i}-2\right)(j=1,2)$. Then, by Theorem 5.14 in [5], $\zeta\left(s_{i}\right)=O\left(t^{\mu_{j}+\epsilon}\right)$, where $s_{i}=\sigma_{i}+i t_{j}$ and $\mu_{i} \leq 1 /\left(2 L_{i}-2\right)$. If $l=l_{1}+g$, $l_{1} \leq l=l_{1}+g \leq l_{2}$, then $\sigma_{1} \leq \sigma=1-l /(2 L-2) \leq \sigma_{2}$ and $\sigma=\sigma_{1}+$ $k\left(\sigma_{2}-\sigma_{1}\right)$ with $0 \leq k=\left(\sigma-\sigma_{1}\right) /\left(\sigma_{2}-\sigma_{1}\right) \leq 1$. By the convexity of $\mu=\mu(\sigma)$,

$$
\mu(\sigma) \leq \mu\left(\sigma_{1}\right)+k\left\{\mu\left(\sigma_{2}\right)-\mu\left(\sigma_{1}\right)\right\}=\frac{\sigma-\sigma_{1}}{\sigma_{2}-\sigma_{1}} \mu\left(\sigma_{2}\right)+\frac{\sigma-\sigma_{2}}{\sigma_{1}-\sigma_{2}} \mu\left(\sigma_{1}\right)
$$

Replacing here σ, σ_{i} and μ_{j} by their values, after routine simplifications, one obtains $\mu \leq\left\{1+\left(1+g-2^{g}\right) /\left(\lambda+2^{-\lambda}\right)\right\} /(2 L-2)$. The function $1+g-2^{g}$ attains its maximum for $2^{g}=(\log 2)^{-1}$; hence, $1+g-2^{g} \leq 1-(\log 2)^{-1}$ $\log (e \log 2) \simeq .08604 \cdots$. The denominator $\lambda+2^{-\lambda} \geq 3+2^{-3}=3.125$, provided that $l \geq 4$ and (i) follows. In case $l_{1}=3, \sigma_{1}=\frac{1}{2}, \sigma_{2}=5 / 7, \sigma=\frac{1}{2}+$ $k\left(5 / 7-\frac{1}{2}\right)=\frac{1}{2}+3 k / 14$ and $k=14\left(\sigma-\frac{1}{2}\right) / 3$. Taking $\mu\left(\sigma_{1}\right)=15 / 92$ (see [3]) and $\mu\left(\sigma_{2}\right)=1 /\left(2 L_{2}-2\right)=1 / 14$, and using the convexity of $\mu(\sigma)$, we obtain $\mu(\sigma) \leq 15 / 92+k(1 / 14-15 / 92)=15 / 92-(59 / 7.92)\left(14\left(\sigma-\frac{1}{2}\right) / 3\right)=$ $(52-59 \sigma) / 138$, proving (iii). Replacing σ by $1-l /(2 L-2), \mu \leq 52 / 138-$ $(59 / 138)(1-l /(2 L-2))=\alpha /(2 L-2)$, with $\alpha \leq(-7(2 L-2)+59 l) / 138$. The numerator is maximum for $2^{l}=59 / 7(\log 2)$, i.e. for $l \simeq 3.604 \cdots$; hence, $\alpha \leq 141.52 / 138 \simeq 1.0254 \cdots$, finishing the proof.

Received May 23, 1956.

