SEPARATION PROPERTIES AND n-INDECOMPOSABLE CONTINUA

By C. E. Burgess

A continuum M is said to be n-indecomposable if (1) M is the union of n continua such that no one of them is a subset of the union of the others and (2) M is not the union of $n+1$ such continua. In some previous papers [3, 4, $5,11]$, such a continuum has been said to be indecomposable under index n. Swingle [11, Theorem 2] has shown that every n-indecomposable continuum is the union of n indecomposable continua such that no one of them is a subset of the union of the others, and the author [4, Theorem 2] has shown that these n indecomposable continua are unique in this respect. In accordance with the above definition, every indecomposable continuum is 1-indecomposable.

A subset H of a continuum M is said to cut M between two subsets K and L of M if K and L lie in $M-H$, and H intersects every subcontinuum of M which intersects both K and L.

A subset H of a continuum M is said to cut M if H cuts M between some two points.

A subset H of a continuum M is said to separate M if $M-H$ is not connected.
A continuum M is said to be separated (cut) by the pair of continua H and K if $H \cup K$ separates (cuts) M.

A subset H of a point set M is said to be an open subset of M if H is open relative to M.

Theorem 1. If, for some positive integer n, the compact metric continuum M is n-indecomposable, then every proper subcontinuum of M cuts M.

Proof. Let G be a collection consisting of n indecomposable continua filling up M such that no one of them is a subset of the union of the others, and let H be any proper subcontinuum of M. It can easily be seen that some continuum K of G intersects H but does not lie in H. It follows from [3, Theorem 1] that some two composants of K lie in $M-\cup(G-K)$ and do not intersect H. (The collection of all elements of G different from X is denoted by $G-X$.) Let x be a point of one of these two composants and y a point of the other, and let L be a subcontinuum of M containing $x \cup y$. It readily follows that $L \supset K$ and, consequently, that L intersects H. Hence H cuts M.

Theorem 2. If M is a bounded plane continuum such that no pair of subcontinua of M separates M and no subcontinuum of M cuts M between two open subsets of M, then there is a positive integer n less than five such that M is n-indecomposable.

Proof. Suppose that M is the union of five continua $M_{1}, M_{2}, \cdots, M_{5}$ such that no one of them is a subset of the union of the others. There exist

Received January 25, 1956.

