THE BANACH ALGEBRA l^1 WITH AN APPLICATION TO LINEAR TRANSFORMATIONS

BY WILLIAM F. DONOGHUE, JR.

Let l^1 denote the Banach algebra of all functions f(z) analytic in the unit circle and with absolutely summable Taylor coefficients, the norm being defined by $||f|| = \sum_{n=0}^{\infty} |a_n|$. In this paper it will be shown that the quotient algebra l^1/I where I is a closed ideal is reflexive if and only if the space is finite dimensional. This result is then used to establish a general theorem concerning linear transformations of a Banach space into itself.

It should be noted that the algebra l^1 differs from many commutative Banach algebras in that no element of the algebra can vanish on an open set of maximal ideals. Thus the results obtained, for example in [2], for algebras satisfying a Ditkin condition are not applicable to l^1 .

In what follows there will be frequent occasion to make use of the concept of the polar of a set. If H is a subset of a Branch space E with conjugate space E^* , the polar of H is the set of all f in E^* for which $\sup_{x\in H} |(x, f)| \leq 1$ and is written H^0 . H^0 is circled, convex and weak-star closed. (A set is called circled if it is invariant under multiplication by complex scalars of modulus ≤ 1 .) H^{00} is the polar of H^0 and is a subset of the second conjugate of E. It is well known that if H is a subspace of E, it will be reflexive if and only if the canonical mapping of E into the second conjugate space carries H onto H^{00} [1].

The conjugate space for l^1 is the space *m* consisting of all bounded sequences X = X(n) $n \ge 0$ of complex numbers with norm $||X|| = \sup_n |X(n)|$, while l^1 itself is the conjugate of c_0 , the subspace of *m* consisting of sequences X(n) for which $\lim_{n\to\infty} X(n) = 0$. In the sequel the letter *V* will denote the linear transformation defined on l^1 by multiplication by *z*; i.e. Vf = g where g(z) = zf(z). The adjoint transformation in *m* is the operator *L* of left-translation there: LX = Y, Y(n) = X(n + 1).

THEOREM 1. If I is a closed ideal in l^1 , then l^1/I is reflexive if and only if it is finite-dimensional.

Proof. It is not difficult to show that the maximal ideal space of the l^1 algebra is the compact unit circle. Corresponding to the closed ideal I there exists a closed set Z of the unit circle which is the hull of I; i.e. the set of all maximal ideals containing I. It will first be shown that Z is a finite set, and from this the finite-dimensionality of l^1/I will be inferred.

If l^1/I is reflexive, then its conjugate space I^0 is a reflexive subspace of m. If Z is infinite, there is a sequence λ_n in Z converging to some λ_0 in Z which is

Received April 28, 1956. Work performed under contract with Office of Naval Research N58304.