SOME TOTIENT FUNCTIONS

By Eckford Cohen

1. Introduction. The Euler ϕ-function, or totient function, has been generalized in a number of ways [4]. The most important such extension is the Jordan function $J_{k}(r)$ defined, for positive integers k and r, to be the number of ordered sets of k elements from a complete residue system $(\bmod r)$ such that the greatest common divisor of each set is prime to r [7; 95-97], [4; 147]. A second generalization is von Sterneck's function $H_{k}(r)$ defined by ($[9],[4 ; 151]$)

$$
\begin{equation*}
H_{k}(r)=\sum_{r=\left[d_{1}, \cdots, d_{k}\right]} \phi\left(d_{1}\right) \cdots \phi\left(d_{k}\right), \tag{1.1}
\end{equation*}
$$

where the summation ranges over all ordered sets of k positive integers d_{1}, \cdots, d_{k} with least common multiple equal to r. It is clear that $J_{1}(r)=H_{1}(r)=$ $\phi(r)$. In fact, $J_{k}(r)$ and $H_{k}(r)$ are equivalent [9], and

$$
\begin{equation*}
J_{k}(r)=H_{k}(r)=r^{k} \sum_{d \mid r} \frac{\mu(d)}{d^{k}}, \tag{1.2}
\end{equation*}
$$

where $\mu(d)$ denotes the familiar Möbius function. The evaluation in (1.2) is sometimes used as an alternative definition of the Jordan function.

Suppose now that a and b are integers, not both zero. We define $\left(a, b_{k}\right)$ to be the largest k-th power divisor common to a and b, and in case $(a, b)_{k}=1$, we say that a and b are relatively k-prime. Further, we shall refer to the subset N of a complete residue system $M\left(\bmod r^{k}\right)$, consisting of all elements of M that are relatively k-prime to r^{k}, as a k-reduced residue system $(\bmod r)$. If, in particular, M consists of the numbers $a, 0 \leq a<r^{k}$, then M will be called a minimal residue system $\left(\bmod r^{k}\right)$ and the corresponding subset N, a minimal, k-reduced residue system $(\bmod r)$.

The number of elements of a k-reduced residue system is denoted by $\phi_{k}(r)$; in particular, $\phi_{1}(r)=\phi(r)$. The function $\phi_{k}(r)$ was introduced in [1] under the name of the Jordan function, but the equivalence of $J_{k}(r)$ and $\phi_{k}(r)$ was not actually proved. The totient $\phi_{k}(r)$ arises naturally as the case $n=0$ of the author's trigonometric sum $c_{k}(n, r)$, defined in [1, §1]. The characteristic properties of $\phi_{k}(r)$ follow as special cases of properties of $c_{k}(n, r)$ proved in [1, §2]. For completeness, we indicate in $\S 2$ several independent proofs of these properties, listed as Theorems 1 through 4. The equivalence of the three functions $J_{k}(r), H_{k}(r)$ and $\phi_{k}(r)$ is established in Theorem 5.

In $\S 3$ the number of solutions $Q_{k}(n, r, s)$ in $x_{i}(\bmod r), y_{i}\left(\bmod r^{k}\right)$ of the congruence,

$$
\begin{equation*}
n \equiv a_{1} x_{1}^{k} y_{1}+\cdots+a_{s} x_{s}^{k} y_{s} \quad\left(\bmod r^{k}\right), \quad\left(a_{i}, r\right)=1 \tag{1.3}
\end{equation*}
$$

Received February 15, 1956.

