WEIGHTED QUADRATIC PARTITIONS OVER $G F[q, x]$

By L. Carlitz

1. Introduction. Let $q=p^{n}, p>2$, and let $G F[q, x]$ denote the ring of polynomials in x with coefficients in $G F(q)$. Let $\Phi=G F\{q, x\}$. denote the power series field consisting of the quantities

$$
\begin{equation*}
\sum_{-\infty}^{m} c_{i} x^{i} \quad\left(c_{i} \varepsilon G F(q)\right) \tag{1.1}
\end{equation*}
$$

We consider the following problem. Let $r \geq 1, \xi_{1}, \cdots, \xi_{r}$ arbitrary numbers of $\Phi, a_{1}, \cdots, a_{r}$ non-zero numbers of $G F(q)$. Then if k is a fixed integer ≥ 1 and M a polynomial of $G F[q, x]$ of degree $\leq 2 k$, define the weighted sum

$$
\begin{equation*}
\sum e\left(2 U_{1} \xi_{1}+\cdots+2 U_{r} \xi_{r}\right) \tag{1.2}
\end{equation*}
$$

where the summation is over all $U_{i} \varepsilon G F[q, x]$ satisfying

$$
\begin{equation*}
a_{1} U_{1}^{2}+\cdots+a_{r} U_{r}^{2}=M \tag{1.3}
\end{equation*}
$$

as well as certain auxiliary conditions. To define $e(\xi)$, let ξ be the number (1.1); then

$$
\begin{equation*}
e(\xi)=e^{2 \pi i t(c-1) / p} \quad t(c)=c+c^{p}+\cdots+c^{p^{n-1}} \tag{1.4}
\end{equation*}
$$

As for the auxiliary conditions, let $0 \leq l \leq r$, then it is assumed in (1.3) that U_{1}, \cdots, U_{l} are primary of degree k while U_{l+1}, \cdots, U_{r} are arbitrary of degree $<k$. Cohen [5], [6], [7] has shown that in the problem of the number of solutions of (1.3) there is a fundamental distinction between the case $l \geq 1$ and the case $l=0$. The sum (1.2) reduces to the number of solutions of (1.3) when $\xi_{1}=\cdots=\xi_{r}=0$, so that one may expect that this difference between the two cases will appear for arbitrary ξ 's.

In an earlier paper [4] the writer has discussed the sum

$$
\begin{equation*}
\sum e_{0}\left(2 b_{1} x_{1}+\cdots+2 b_{r} x_{r}\right) \tag{1.5}
\end{equation*}
$$

where the sum is over all $x_{i} \varepsilon G F(q)$ such that

$$
\begin{equation*}
a_{1} x_{1}^{2}+\cdots+a_{r} x_{r}^{2}=a \quad\left(a_{i}, a \varepsilon G F(q)\right) \tag{1.6}
\end{equation*}
$$

and

$$
e_{0}(a)=e^{2 \pi i t(a) / p}, \quad t(a)=a+a^{p}+\cdots+a^{p^{n-1}}
$$

It was shown that (1.5) can either be evaluated explicitly, or at any rate, expressed in terms of a Kloosterman sum over $G F(q)$. The sum (1.5) is evidently a special case of (1.2). In the present paper we show how (1.2) can be evaluated.

