THE RATIONAL POINTS IN HILBERT SPACE

By J. H. Roberts

1. Introduction. In [1], Erdös proved that the set R of rational points of Hilbert space is 1 -dimensional. It follows from the general embedding theorem (see, for example, [2], Theorem V 3, p. 60) that R is homeomorphic to a subset of Euclidean 3-space. The object of the present paper is to show (Theorem 2) that there exists a homeomorphism h mapping R into a subset of the Euclidean plane. The author is indebted to Dr. Erdös for calling his attention to this problem. Theorem 3 gives an explicit formula for a homeomorphism of Hilbert space into the Hilbert cube.
2. Notation. Hilbert space, H, is the set of all $x=\left(x_{1}, x_{2}, \cdots\right)$ such that x_{i} is real and $\Sigma x_{i}^{2}<\infty$. The Hilbert cube, I_{ω}, is the subset of H consisting of all x such that $\left|x_{i}\right| \leq 1 / i$. If $x \in H$ then x_{i} will denote the i-th coordinate of x. This notation also occurs in the form $(f(x))_{i}$, where f is a mapping into H. For $x \varepsilon H, y \varepsilon H, d(x, y)$ denotes the distance from x to y defined by the extended Euclidean formula. In particular, the distance from x to the origin, $\left(\Sigma x_{i}^{2}\right)^{\frac{1}{2}}$, is called the norm of x and denoted $\|x\|$.

The function φ given by the equation

$$
\begin{equation*}
\varphi(x)=x /(1+|x|) \quad|x|<\infty \tag{1}
\end{equation*}
$$

is a homeomorphism of the space of real numbers onto the open interval $(-1,1)$. Its inverse is given by the equation

$$
\begin{equation*}
\varphi^{-1}(x)=x /(1-|x|) \quad|x|<1 \tag{2}
\end{equation*}
$$

Note that $\varphi(x)$ is rational if and only if x is rational.
3. Results. Theorem 1. The function $g: H \rightarrow I_{\omega}$, defined by the equations $(g(x))_{i}=\varphi\left(x_{i}\right) / i(i=1,2, \cdots)$ is continuous and one-to-one, and preserves rationality coordinatewise.

Let C denote the Cantor discontinuum on the closed interval [0,1] of the x-axis, p the point ($\frac{1}{2}, 1$), and let D be the union of all closed intervals $p x, x \in C$. The set D is a "Cantor fan".

The set of rational points in I_{ω} is 0-dimensional (see [2], Example II 9, p. 12) and there is a homeomorphism α taking this set into a subset of C.

Theorem 2. For $x \in R$, let $h(x)$ be the point in D lying on the interval joining p to $\alpha(g(x))$, and having y-coordinate equal to $\varphi(\|x\|)$. Then h is a homeomorphism.

Received March 20, 1953. Presented to the American Mathematical Society in April, 1953.

