CONVERSES OF SCHWARZ’S INEQUALITY
By RICHARD BELLMAN

1. Introduction. The well-known inequality of Schwarz states that

(1) ( fo @) dx>2 < ( fo i dx)( fo g dx),

for any two functions u and » belonging to L*(0, 1). Without additional re-
strictions upon % and v, there is no non-trivial inequality going in the other
direction; i.e., one of the form

(2 (fol w(z)v(x) dac)2 > k(j;l u® dx)(j;l RE) dx),

where k£ > 0.

If, however, u and v are restricted to lie within certain function classes, there
do exist inequalities of the above form with % a positive constant dependent
upon the classes chosen. The first discussion of problems of this variety occurs
in the papers of Blaschke and Pick, [1], for the case where u(x) and v(x) are
concave. (An earlier paper, Frank and Pick, Mathematische Annalen, vol. 76
(1915), p. 354, should also be consulted).

The purpose of this paper is to present a general method for attacking these
problems which is equally applicable to other function classes and to multi-
dimensional versions. Although it does not solve any particular problem
completely, it reduces each problem to a particular investigation which in
some cases can be carried through completely.

We shall begin with the one-dimensional case, demonstrating

TuroreM 1. Let u(zx) and v(x) be concave functions of x for 0 < z < 1, normal-
tzed by the conditions

(a) folu2dx=1, folzfdx=1,

3)

(b) u(0) = u(1) = 0, v(0) = v(1) = 0.
Then
@ [ un@ de > 5

This result is certainly contained in the paper of Blaschke and Pick cited
above, although apparently not explicitly stated in the above form. The
minimum is attained for

®) u@ =2v3, 0<ae<1, ul) =0,
@) = (1 —2)V3, 0<az<1, o0 =0.
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