SCHLICHT FUNCTIONS WITH REAL COEFFICIENTS

By Edgar Reich

1. Introduction. We will consider two classes of functions, regular and schlicht, and having real coefficients for $|z|<1$. Functions of this type are evidently of interest in connection with potential problems involving simplyconnected regions that are symmetric with respect to a straight line or circle.

As usual, let S be the class of functions, $w=f(z)=z+a_{2} z^{2}+\cdots$, regular and schlicht for $|z|<1$. Let S_{T} be the subclass of $f \varepsilon S$ having all a_{k} real. If $f \varepsilon S_{T}$ takes on w_{0} at $z=z_{0}$, then $-f(-z)=g \varepsilon S_{T}$, and takes on $-w_{0}$ at $z=-z_{0}$. Furthermore f takes on \bar{w}_{0} at $z=\bar{z}_{0}$. Hence one still obtains the full picture after restricting z_{0} to the first quadrant.

The commonly known properties of S_{r} have been obtained by showing that an extremal problem for the larger class T of typically-real functions was solved by an element of $S_{T}[4 ; 2]$. In this way, e.g. best upper bounds for $\left|f\left(z_{0}\right)\right|$ as a function of z_{0} were obtained, and it was also shown that

$$
m\left(z_{0}\right)=\inf _{f_{\varepsilon} s r}\left|f\left(z_{0}\right)\right|=\left|z_{0} /\left(1+z_{0}\right)^{2}\right| \quad \text { if } \quad R\left(z_{0}+1 / z_{0}\right) \geq 2
$$

The method fails, however, to yield $m(z)$ when $0 \leq R(z+1 / z)<2$. In §3 we study some properties of S_{T} by means of a representation derived from Basilewitsch's differential equation. In particular, certain mappings of S_{T} into itself which have the property of reducing $\left|f\left(z_{0}\right)\right|$ are described. We obtain the rather unexpected result that $m(z)$ assumes a maximum at an interior point of $|z|<1$.

Let $s(\alpha)$ be the class of functions, $w=h(z)=a_{1} z+a_{2} z^{2}+\cdots$, regular and schlicht for $|z|<1$, for which all a_{k} are real, $0<a_{1} \leq \alpha,|h(z)|<1$. In §4 we obtain the variability region for $h\left(z_{0}\right)$ as h ranges over $s(\alpha)$.

The starting point is the following known representation for a class of slit mappings h, dense in $s(1)$, due to Basilewitsch [1], Tammi [5], and Komatu.

Theorem. Consider schlicht two-slit domains B, consisting of the unit circle with a Jordan curve (omitting the origin) and its symmetric image with respect to the real w-axis as slits. For every such domain B we can find a real-valued function $\sigma(t),-1 \leq \sigma(t) \leq 1$, continuous on $[0, T]$, which has the following property: Considered as a function of z, the function $h(z, T)$ obtained by solving

$$
\begin{equation*}
\frac{d h(z, t)}{d t}=\frac{h(z, t)^{3}-h(z, t)}{1-2 \sigma(t) h(z, t)+h(z, t)^{2}}, \quad 0 \leq t \leq T, \quad h(z, 0)=z \tag{1.1}
\end{equation*}
$$

is an element of $s(1)$, with $h(z, T)=e^{-T} z+\cdots$. Conversely, for every piecewise continuous $\sigma(t)$ on $[0, T],-1 \leq \sigma(t) \leq 1$, the solution of (1.1) is in $s(1)$, and $h(z, T)=e^{-T} z+\cdots$.

Received January 21, 1956. The major part of this work was done during the tenure of a National Science Foundation postdoctoral fellowship at the Institute for Advanced Study.

