POLYNOMIAL SOLUTIONS OF THE CYLINDRICAL WAVE EQUATION

By O. G. Owens

1. Introduction. The conical characteristic value problem for the cylindrical wave equation is the determination on the interior of the characteristic cone

(1.1)
$$t^2 = x^2 + y^2 \qquad (t > 0)$$

of that solution u(x, y, t) of the wave equation

(1.2)
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

assuming prescribed functional values

(1.3)
$$u(x, y, r) = \psi(x, y) \qquad (x = r \cos \theta, y = r \sin \theta)$$

on the surface (1.1).

If a solution u(x, y, t) of this problem exists, then the mean-value theorem [1] of Asgeirsson implies that

(1.4)
$$u(0, 0, t_0) = \psi(0, 0) + \frac{t_0^3}{2\pi} \iint \frac{[x\psi_x + y\psi_y] \, dx \, dy}{r^2 \sqrt{t_0 - 2r}} \qquad 0 \le 2r \le t_0 \; .$$

Provided that there exists a Lorentz transformation which leaves invariant both the wave equation and the characteristic cone and takes the point (x_0, y_0, t_0) into the point $(0, 0, \sqrt{t_0^2 - x_0^2 - y_0^2})$, then (1.4) can be used to obtain the value of u at any interior point (x_0, y_0, t_0) of (1.1). This needed Lorentz transformation will now be given explicitly, but first some notational symbolism will be introduced. The notational abbreviations are the following:

(1.5)
$$\Gamma \equiv (t^2 - x^2 - y^2)^{\frac{1}{2}}, \quad \Phi \equiv (t^2 - y^2)^{\frac{1}{2}}, \quad \Lambda \equiv (t^2 - x^2)^{\frac{1}{2}},$$
$$\Omega \equiv t - x \cos \theta - y \sin \theta$$

and the symbols Γ_0 , Φ_0 , Λ_0 , Ω_0 which will denote the values of Γ , Φ , Λ , Ω at the point (x_0, y_0, t_0) . In terms of this notation the Lorentz transformation is given by

(1.6)
$$x = -\frac{t_0}{\Lambda_0} \xi - \frac{x_0 y_0}{\Lambda_0 \Gamma_0} \eta + \frac{x_0}{\Gamma_0} \zeta$$
$$y = -\frac{1}{\Lambda_0 \Gamma_0} \eta + \frac{y_0}{\Gamma_0} \zeta$$
$$t = -\frac{x_0}{\Lambda_0} \xi - \frac{t_0 y_0}{\Lambda_0 \Gamma_0} \eta + \frac{t_0}{\Gamma_0} \zeta.$$

Received December 5, 1955.