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1. Introduction. Several theorems are herein proved which relate the
maximal possible number of orthogonal projections in a ring of operators, the
Murray-yon Neumann "dimension" of the ring of operators, and the minimal
possible cardinality of a weakly dense subset. When possible, this is done in
the more general context of AW* algebras. Theorem 1 states that a purely
infinite AW* algebra contains a purely infinite projection which is minimal, in
the sense of the Murray-von Neumann partial ordering of equivalence classes
of projections, among all the purely infinite projections whose central covers
are equal to the identity; (this result is known for rings of operators; see, for
example, [4]).
For the purpose of stating Theorems 2 and 3, some definitions. An AW*

algebra will be called a-decomposable, where a is a cardinal number, if every set
of nonzero orthogonal projections of the algebra has cardinality

_
a; it will be

called locally a-decomposable if it is a C* direct sum of a-decomposable summands;
and it will be called a-bounded if every set of nonzero orthogonal equivalent
projections has cardinality

___
a. No-decomposability will be called, as is

customary, countable decomposability. Then Theorem 2 asserts that every
a-bounded AW* albegra whose center is adecomposable must itself be a-de-
composable; and Theorem 3 states that a ring of operators with a weakly dense
subset of cardinality

_
a must be locally a-decomposable.

Familiarity with the contents of [2] is assumed.

2. Some dimension theory. Let A be a purely infinite AW* algebra, Z its
center, and f the canonical *-isomorphism from Z onto the algebra C(F) of all
continuous complex-valued functions on the spectrum F of Z. We construct
a "dimension function" for purely infinite projections of A" a map d assigning
to each purely infinite projection P of A an order-continuous function d(P)
from F to cardinal numbers, such that P Q if and only if d(P) (’)
for all , in F. This construction, based on a suggestion by I. Kaplansky, would
seem on the face of it not to be the most natural one; for example, to the identity
in the ring of all bounded operators on a separable Hilbert space it assigns the
smallest uncountable cardinal, rather than the cardinal No, thus differing from
what one would ordinarily choose for a dimension function in a ring of operators;
however, in our present state of knowledge about AW* algebras, this seems
to be the only possible choice for the purpose at hand.
For any infinite projection P in A, define h(P) A {a P cannot be split
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