SOME CONNECTIONS BETWEEN TOPOLOGICAL AND ALGEBRAIC PROPERTIES IN RINGS OF OPERATORS

By JACOB FELDMAN

1. Introduction. Several theorems are herein proved which relate the maximal possible number of orthogonal projections in a ring of operators, the Murray-von Neumann "dimension" of the ring of operators, and the minimal possible cardinality of a weakly dense subset. When possible, this is done in the more general context of AW^* algebras. Theorem 1 states that a purely infinite AW^* algebra contains a purely infinite projection which is minimal, in the sense of the Murray-von Neumann partial ordering of equivalence classes of projections, among all the purely infinite projections whose central covers are equal to the identity; (this result is known for rings of operators; see, for example, [4]).

For the purpose of stating Theorems 2 and 3, some definitions. An AW^* algebra will be called a-decomposable, where a is a cardinal number, if every set of nonzero orthogonal projections of the algebra has cardinality $\leq a$; it will be called *a-decomposable* if it is a C^* direct sum of a-decomposable summands; and it will be called a-bounded if every set of nonzero orthogonal equivalent projections has cardinality $\leq a$. \aleph_0 -decomposability will be called, as is customary, countable decomposability. Then Theorem 2 asserts that every a-bounded AW^* albegra whose center is a-decomposable must itself be a-decomposable; and Theorem 3 states that a ring of operators with a weakly dense subset of cardinality $\leq a$ must be locally a-decomposable.

Familiarity with the contents of [2] is assumed.

2. Some dimension theory. Let \mathbf{A} be a purely infinite AW^* algebra, \mathbf{Z} its center, and f the canonical *-isomorphism from \mathbf{Z} onto the algebra $\mathbf{C}(\Gamma)$ of all continuous complex-valued functions on the spectrum Γ of \mathbf{Z} . We construct a "dimension function" for purely infinite projections of \mathbf{A} : a map d assigning to each purely infinite projection P of \mathbf{A} an order-continuous function d(P) from Γ to cardinal numbers, such that $P \preceq Q$ if and only if d(P) (γ) $\leq d(Q)$ (γ) for all γ in Γ . This construction, based on a suggestion by I. Kaplansky, would seem on the face of it not to be the most natural one; for example, to the identity in the ring of all bounded operators on a separable Hilbert space it assigns the smallest uncountable cardinal, rather than the cardinal \aleph_0 , thus differing from what one would ordinarily choose for a dimension function in a ring of operators; however, in our present state of knowledge about AW^* algebras, this seems to be the only possible choice for the purpose at hand.

For any infinite projection P in A, define $h(P) = \bigwedge \{a \mid P \text{ cannot be split} \}$

Received September 28, 1955; in revised form, January 20, 1956. This research was done while the author was holding a National Science Foundation postdoctoral fellowship.