ON THE OPERATOR EQUATION BX - XA = Q

By MARVIN ROSENBLUM

1. Introduction. We will be considering a Banach algebra \mathfrak{B} , with elements A, B, Q, \cdots , and identity element I. T will be the operator on \mathfrak{B} such that T(Q) = BQ - QA for every Q in \mathfrak{B} .

The following two results are to be found in the literature:

Result 1.1. Let \mathfrak{B} be the algebra of n by n matrices. If the characteristic roots of A are distinct from the characteristic roots of B, then T^{-1} exists and is bounded.

Proof. See Rutherford [3].

Result 1.2. Let \mathfrak{B} be the space of bounded operators on a Hilbert space. If there exist real numbers a and b such that a > b, $B + B^* \leq b$, and $A + A^* \geq a$, then T^{-1} exists as a bounded operator and has the representation

(i)
$$T^{-1}(Q) = -\int_0^\infty e^{Bt} Q e^{-At} dt.$$

Proof. See E. Heinz [2]. For an extension of this theorem see Cordes [1].

In this paper we shall develop an operational calculus for T that will shed light on results 1.1 and 1.2.

2. Definitions and notation. The resolvent set $\rho(A)$ of an element A of a Banach algebra is the set of all complex numbers z such that $(z - A)^{-1}$ is in \mathfrak{B} . (We write $(z - A)^{-1}$ for $(zI - A)^{-1}$.) The spectrum $\sigma(A)$ of A is the complement of $\rho(A)$ in the complex plane. We agree that ϕ is the empty set. If S_1 and S_2 are subsets of the complex plane, then $S_1 - S_2$ is defined to be the set of all complex numbers z such that for some z_1 in S_1 and z_2 in S_2 , $z = z_1 - z_2$.

A set D in the complex plane is a *Cauchy domain* if the following conditions are satisfied:

- (i) D is bounded and open;
- (ii) D has a finite number of components, the closures of any two of which are disjoint; and
- (iii) the boundary of D is composed of a finite positive number of closed rectifiable Jordan curves, no two of which intersect.

We denote the positively oriented boundary of D by b(D).

The following topological theorem is proved in Taylor [4].

THEOREM 2.1. Let F be a closed and G a bounded open subset of the complex plane such that $F \subset G$. Then there exists a Cauchy domain D such that $F \subset D$ and $\overline{D} \subset G$.

Received December 16, 1955. This research was performed in part under contract DA-04-200-ORD-171 Task Order 5 for the Office of Ordnance Research, U. S. Army.