ON THE OPERATOR EQUATION $B X-X A=Q$

By Marvin Rosenblum

1. Introduction. We will be considering a Banach algebra \mathfrak{B}, with elements A, B, Q, \cdots, and identity element I. T will be the operator on \mathbb{B} such that $T(Q)=B Q-Q A$ for every Q in \mathfrak{B}.

The following two results are to be found in the literature:
Result 1.1. Let \mathbb{B} be the algebra of n by n matrices. If the characteristic roots of A are distinct from the characteristic roots of B, then T^{-1} exists and is bounded.

Proof. See Rutherford [3].
Result 1.2. Let \mathbb{B} be the space of bounded operators on a Hilbert space. If there exist real numbers a and b such that $a>b, B+B^{*} \leq b$, and $A+A^{*} \geq a$, then T^{-1} exists as a bounded operator and has the representation

$$
\begin{equation*}
T^{-1}(Q)=-\int_{0}^{\infty} e^{B t} Q e^{-A t} d t \tag{i}
\end{equation*}
$$

Proof. See E. Heinz [2]. For an extension of this theorem see Cordes [1].
In this paper we shall develop an operational calculus for T that will shed light on results 1.1 and 1.2.
2. Definitions and notation. The resolvent set $\rho(A)$ of an element A of a Banach algebra is the set of all complex numbers z such that $(z-A)^{-1}$ is in Θ. (We write $(z-A)^{-1}$ for $(z I-A)^{-1}$.) The spectrum $\sigma(A)$ of A is the complement of $\rho(A)$ in the complex plane. We agree that ϕ is the empty set. If S_{1} and S_{2} are subsets of the complex plane, then $S_{1}-S_{2}$ is defined to be the set of all complex numbers z such that for some z_{1} in S_{1} and z_{2} in $S_{2}, z=z_{1}-z_{2}$.

A set D in the complex plane is a Cauchy domain if the following conditions are satisfied:
(i) D is bounded and open;
(ii) D has a finite number of components, the closures of any two of which are disjoint; and
(iii) the boundary of D is composed of a finite positive number of closed rectifiable Jordan curves, no two of which intersect.
We denote the positively oriented boundary of D by $b(D)$.
The following topological theorem is proved in Taylor [4].
Theorem 2.1. Let F be a closed and G a bounded open subset of the complex plane such that $F \subset G$. Then there exists a Cauchy domain D such that $F \subset D$ and $\bar{D} \subset G$.

Received December 16, 1955. This research was performed in part under contract DA-04-200-ORD-171 Task Order 5 for the Office of Ordnance Research, U. S. Army.

