RADICALS IN FUNCTION RINGS

By R. S. PIERCE

1. Introduction. This paper is a study of radicals on the class of function rings, or f-rings [2]; the definition and basic properties of f-rings are reviewed in §2 below.

The concept "radical of a ring" is interpreted in the following sense [3]: let C be a category of rings and their homomorphisms and let U be a subclass of rings of C; for each $R \in C$, let $\rho_U(R)$ be the set of all elements of R which are mapped onto zero by every homomorphism (in C) of R onto a ring of U. Thus ρ_U is a function on the objects of the category C such that $\rho_U(R)$ is a two-sided ideal of R. The functions ρ_U obtained in this way are called radicals on the category C and for each $R \in C$, the ideal $\rho_U(R)$ is called the ρ_U -radical of R. It follows from the definition that a ring R in C is isomorphic to a subdirect union of rings of the class U if and only if $\rho_U(R)$ is the zero ideal [6]. Thus, the radicals are natural tools for studying the various subdirect decompositions of rings. The object of this paper is to characterize various radicals ρ_U on the category of f-rings in terms of identities satisfied by the elements of $\rho_U(R)$.

2. Function rings. A lattice-ordered ring, or *l*-ring [2] is an associative ring which is lattice-ordered such that $x \to x + a$ is a lattice automorphism for all a, and $x \to ax$ and $x \to xa$ are order endomorphisms whenever $a \ge 0$. If, in addition,

(1) $a \wedge b = 0, x \ge 0$ implies $xa \wedge b = ax \wedge b = 0$, then the *l*-ring is called a *function ring*, or *f*-ring. An *l*-ring whose ordering is simple is called an ordered ring. Any ordered ring is an *f*-ring.

The following notation is borrowed from the theory of *l*-groups [1]: $a^+ = a \lor 0, a^- = a \land 0, |a| = a^+ - a^-, R^+ = \{a^+ | a \in R\}$. For any $a, a^+ + a^- = a$. Also, if $a, b, c \ge 0$, it is easy to show that $a \land (b + c) \le (a \land b) + (a \land c)$. In any *l*-ring, $|ab| \le |a| |b|$; in an *f*-ring, the equality prevails.

A homomorphism of an *l*-ring *R* will always mean a homomorphism of *R* considered as a ring and as a lattice. The homomorphic image of an *l*-ring *R* is determined to within isomorphism by the coset of zero—the kernel of the homomorphism. This kernel *I* is always an *l*-ideal of *R*, that is, *I* is a two-sided ring ideal of *R* which satisfies: $a \in I$, $|b| \leq |a|$ implies $b \in I$. Conversely, any *l*-ideal of *R* determines a homomorphism of *R* onto the *l*-ring *R/I* of cosets of *I*. The homomorphic image of any *f*-ring (ordered ring) is again an *f*-ring (ordered ring).

DEFINITION 1. Let I be an *l*-ideal of the *f*-ring R. Then I is called an *l*-prime ideal, or *lp*-ideal, if $a \notin I$ and $b \notin I$ together imply $|a| \land |b| \notin I$.

Received August 1, 1955. The author is a Jewett fellow of the Bell Telephone Laboratories.