REDUCTION OF EQUATIONS TO NORMAL FORM IN FIELDS OF CHARACTERISTIC p

By James Richard Garrett

1. Introduction. In [2] the equation of degree 5 with coefficients in a field F of characteristic $p=2,3,5$ was reduced to principal and normal form by means of Tschirnhaus transformations. Dickson [1, Chapter XII] gave similar results for the quintic in case F is of characteristic 0 which also hold for F of characteristic $p \geq 7$. The present paper extends those results of [2] to equations of degree $n, n \geq 6$, with coefficients in a field F of characteristic $p \geq 2$. Theorem 1 treats the principal form while Theorem 2 yields the normal form, both for $p \geq 7$. Theorems 3 and 4 relate to the distinctly different situations for $0<p<7$. Throughout, certain differences are evident depending on whether $p \nmid n$ or $p \mid n$. The transformation of lowest degree which will accomplish the desired reduction is preferred and usually employed.
2. Preliminary. Let $x_{1}, x_{2}, \cdots, x_{n}$ be the roots of the equation

$$
F(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0 \quad\left(a_{1} \varepsilon F\right)
$$

where F is a field of characteristic p. A Tschirnhaus transformation [3] of (2.1) into

$$
\begin{equation*}
F(y)=y^{n}+b_{1} y^{n-1}+\cdots+b_{n}=0 \tag{2.2}
\end{equation*}
$$

is taken in the form

$$
\begin{equation*}
y=c x^{n-1}+d x^{n-2}+\cdots+f \tag{2.3}
\end{equation*}
$$

The coefficients of (2.2) are known by symmetric functions in terms of the coefficients of (2.3) which are taken as parameters.

Newton's identities are given for later use by

$$
\begin{equation*}
S_{k}=-a_{1} S_{k-1}-a_{2} S_{k-2}-\cdots-a_{k-1} S_{1}-k a_{k} \tag{2.4}
\end{equation*}
$$

where S_{k} denotes the sums of the k-th power of the roots of (2.1) in terms of the a_{i}. In particular

$$
\begin{align*}
& S_{1}=-a_{1}, \quad S_{2}=a_{1}^{2}-2 a_{2}, \quad S_{3}=-a_{1}^{3}+3 a_{1} a_{2}-3 a_{3} \\
& S_{4}=a_{1}^{4}-4 a_{1}^{2} a_{2}+2 a_{2}^{2}+4 a_{1} a_{3}-4 a_{4} \\
& \begin{aligned}
S_{5} & =-a_{1}^{5}+5 a_{1}^{3} a_{2}-5 a_{1}^{2} a_{3}+5 a_{1} a_{4}-5 a_{1} a_{2}^{2}+5 a_{2} a_{3}-5 a_{5} \\
S_{6}= & a_{1}^{6}-6 a_{1}^{4} a_{2}+6 a_{1}^{3} a_{3}-6 a_{1}^{2} a_{4}+9 a_{1}^{2} a_{2}^{2} \\
& \quad-12 a_{1} a_{2} a_{3}+6 a_{1} a_{5}-2 a_{2}^{3}+6 a_{2} a_{4}+3 a_{3}^{2}-6 a_{6}
\end{aligned} \tag{2.5}
\end{align*}
$$

Received July 16, 1955. Presented to the American Mathematical Society November 18, 1955. Prepared in part under a grant-in-aid from Duke University.

