A FURTHER NOTE ON DEDEKIND SUMS

By L. Carlitz

1. Apostol [1] has proved a transformation formula for

$$
G_{m-1}(x)=\sum_{r, s=1}^{\infty} r^{-(m-1)} x^{r s} \quad(|x|<1)
$$

where m is a fixed even integer >2. In the formula occur the numbers

$$
\begin{equation*}
c_{r, s}(h, k)=\sum_{\mu(\bmod k)} \bar{B}_{r}\left(\frac{\mu}{k}\right) \bar{B}_{s}\left(\frac{h \mu}{k}\right) \tag{1.1}
\end{equation*}
$$

where r and s are non-negative integers, $\bar{B}_{r}(x)$ is the Bernoulli function, and the summation is over a complete residue system $(\bmod k)$. Put

$$
\begin{equation*}
f_{m}(h, k ; \tau)=\sum_{s=0}^{m}\binom{m}{s}(k \tau-h)^{m-s-1} c_{m-s, s}(h, k) \tag{1.2}
\end{equation*}
$$

Then the transformation formula can be written in the form

$$
\begin{equation*}
G_{m-1}\left(e^{2 \pi i \tau}\right)=(k \tau-h)^{m-2} G_{m-1}\left(e^{2 \pi i \tau_{1}}\right)+\frac{(2 \pi i)^{m-1}}{2 \cdot m!} f_{m}(h, k ; \tau) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{1}=\left(h^{\prime} \tau+k^{\prime}\right) /(k \tau-h), \quad h h^{\prime}+k k^{\prime}+1=0 \tag{1.4}
\end{equation*}
$$

It was proved in [3] that (1.3) implies

$$
\begin{equation*}
f_{m}(h, k ; \tau)=(-1)^{m} \tau^{m-2} f_{m}\left(-k, h ;-\frac{1}{\tau}\right)+\frac{1}{\tau}(B+\tau B)^{m} \tag{1.5}
\end{equation*}
$$

where B_{m} is a Bernoulli number in the even suffix rotation; (1.5) was proved in an elementary way in [2] for all $m \geq 0$.

A generalization of (1.5) can be obtained as follows. Put

$$
\begin{equation*}
\tau_{2}=\left(h_{1}^{\prime} \tau_{1}+k_{1}^{\prime}\right) /\left(k_{1} \tau_{1}-h_{1}\right), \quad h_{1} h_{1}^{\prime}+k_{1} k_{1}^{\prime}+1=0 \tag{1.6}
\end{equation*}
$$

so that

$$
G_{m-1}\left(e^{2 \pi i \tau_{1}}\right)=\left(k_{1} \tau_{1}-h_{1}\right)^{m-2} G_{m-1}\left(e^{2 \pi i \tau_{2}}\right)+\frac{(2 \pi i)^{m-1}}{2 \cdot m!} f_{m}\left(h_{1}, k_{1} ; \tau_{1}\right)
$$

Substituting in (1.3) we get

$$
\begin{align*}
& G_{m-1}\left(e^{2 \pi i \tau}\right)=(k \tau-h)^{m-2}\left(k_{1} \tau_{1}-h_{1}\right)^{m-2} G_{m-1}\left(e^{2 \pi i \tau_{2}}\right) \\
& \quad+\frac{(2 \pi i)^{m-1}}{2 \cdot m!}(k \tau-h)^{m-2} f_{m}\left(h_{1}, k_{1} ; \tau_{1}\right)+\frac{(2 \pi i)^{m-1}}{2 \cdot m!} f_{m}(h, k ; \tau) \tag{1.7}
\end{align*}
$$

Received August 31, 1955.

