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Introduction. This paper considers a modification in two ways of the
Bernstein-Widder representation of completely monotone functions on (0, o):

(1) f(t) fo e-

where (u) is non-decreasing.

The analogue of (1) for n-times monotone functions, n _> 1, is

(2) f t) fo [(1 ut) + ]n-1 dfl(u)

with (u) non-decreasing. This formula was discovered by Schoenberg in
1940 but has remained unpublished. See, however, Schoenberg [11].
Part I consists of a discussion of (2) and its properties. In Part II the class
K of a-times monotone functions for arbitrary values of a greater than one is
defined. The definition and theorems can be extended to values of a between
zero and one, but, apparently, separate proofs are required, so this is not done
here. In Part III the determining function of formula (1) is specialized to be
absolutely continuous with its derivative in K, and (1) is then considered
both as a transform and as an analytic function of t.

I am very grateful indeed to Professor Schoenberg for his generously given
help and kind encouragement in the preparation of the paper.

PART I. THE n-TIMES MONOTONE FUNCTIONS.

1. Definitions and a lemma.

DEFINITION 1. A function f(t) is completely monotone for > 0 if (-1)
f()(t) >_0fort>0andfork =0,1,2,....
DEFINITION 2. A function f(t) defined for > 0 is n-times monotone where

n is an integer, n _> 2, if (- 1) f()(t) is non-negative, non-increasing and convex
fort > 0, andfor/ 0, 1, 2, ,n- 2. Whenn 1, f(t) willsimplybe
non-negative and non-increasing. Compare Royall [10].
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