ARITHMETIC PROPERTIES OF BERNOULLI NUMBERS OF HIGHER ORDER

By F. R. Olson

1. Introduction. The Bernoulli numbers of order k may be defined by means of [7; Chapter 6]

$$
\begin{equation*}
\left(\frac{x}{e^{x}-1}\right)^{k}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!} B_{m}^{(k)} \quad(|x|<2 \pi) \tag{1.1}
\end{equation*}
$$

For $k=1$ it is customary to write $B_{m}^{(1)}=B_{m}$. Moreover $B_{2 s+1}=0$ for $s \geq 1$. In the first part of this paper we consider some divisibility properties of $\bar{B}_{m}^{(k)}$. S. Wachs [8] has proved a result equivalent to

$$
\begin{equation*}
B_{p+2}^{(p+1)} \equiv 0 \quad\left(\bmod p^{2}\right), \tag{1.2}
\end{equation*}
$$

where p is a prime ≥ 3. This has been sharpened [1] to

$$
\begin{equation*}
B_{p+2}^{(p+1)} \equiv \frac{p^{3}}{6}\left(\bmod p^{4}\right) \quad(p \geq 5) \tag{1.3}
\end{equation*}
$$

We prove in $\S 4$ that

$$
\begin{equation*}
B_{p+2}^{(p+1)} \equiv \frac{p^{4}}{4}-\frac{p^{3}}{6}(p-1)!\quad\left(\bmod p^{5}\right) \quad(p \geq 5) \tag{1.4}
\end{equation*}
$$

Also in [1] it was proved that

$$
\begin{equation*}
B_{p}^{(p)} \equiv-\frac{p^{2}}{2}(p-1)!\left(\bmod p^{5}\right) \quad(p \geq 5) \tag{1.5}
\end{equation*}
$$

This we extend in §3 to

$$
\begin{equation*}
B_{p}^{(p)} \equiv-\frac{p^{2}}{2}(p-1)!+\frac{p^{5}}{36} B_{p-3} \quad\left(\bmod p^{6}\right) \quad(p \geq 7) \tag{1.6}
\end{equation*}
$$

Nörlund [7; Chapter 6] considered generalized Bernoulli numbers, those of positive order being defined by

$$
\prod_{i=1}^{k} \frac{\omega_{i} x}{e^{\omega_{i} x}-1}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!} B_{m}^{(k)}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{k}\right],
$$

and those of negative order by

$$
\prod_{i=1}^{h} \frac{e^{\omega_{i} x}-1}{\omega_{i} x}=\sum_{m=0}^{\infty} \frac{x^{m}}{m!} B_{m}^{(-h)}\left[\omega_{1}, \omega_{2}, \cdots, \omega_{h}\right] .
$$

[^0]
[^0]: Received February 17, 1955. This paper constitutes a part of a doctoral thesis submitted to Duke University and prepared under the direction of Professor L. Carlitz.

