SUMMABILITY OF GENERALIZED BERNSTEIN POLYNOMIALS. I.

By P. L. Butzer

1. Introduction. If $f(x)$ is Lebesgue integrable over the closed interval $[0,1]$ then the generalized Bernstein polynomials here considered are defined as

$$
P_{n}^{f}(x)=\sum_{\nu=0}^{n}(n+1) p_{\nu, n}(x) \int_{\nu /(n+1)}^{(\nu+1) /(n+1)} f(t) d t, \quad n=0,1,2, \cdots
$$

where

$$
p_{\nu, n}(x)=\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu} .
$$

It is known that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{n}^{\prime}(x)=f(x) \tag{1}
\end{equation*}
$$

almost everywhere in $[0,1]$, more precisely, at every point x where $f(x)$ equals the derivative of its indefinite integral (see [5], [6] or [1]). Another property (see [1]) of the $P_{n}^{f}(x)$ is that if $f(x) \varepsilon L^{p}[0,1], p>1$, they converge dominatedly in the space L^{p} and hence also in the mean (of order p) to $f(x)$.
These, among other properties, illustrate the analogy that exists between the polynomials $P_{n}^{\prime}(x)$ and the Fejér means of the partial sums $S_{n}(x)$ of the Fourier series (c.f. [10]). Extending this parallelism, it seems reasonable to consider the polynomials

$$
\mathfrak{\Re}_{n}^{\prime}(x) \equiv(n+1) P_{n}^{f}(x)-n P_{n-1}^{f}(x)
$$

which would correspond to the partial sums $S_{n}(x)$. More generally, the question of summability will be introduced. The behaviour of the Lagrange interpolation polynomials (see [8] or [2]), the trigonometric interpolating polynomials (see [11]), and the Legendre series for $f(x)$ (see [4] or [7]) is somewhat similar to that of the $\mathfrak{P}_{n}^{f}(x)$.
2. Asymptotic relation for the $P_{n}^{f}(x)$. We first establish a useful asymptotic expansion for the $P_{n}^{f}(x)$.

Theorem 1. If $f(x)$ is defined in $[0,1],|f(x)| \leq M$, then at every point $x \in[0,1]$ where $f^{\prime \prime}(x)$ exists,

$$
\lim _{n \rightarrow \infty}(n+1)\left[P_{n}^{f}(x)-f(x)\right]=\frac{1}{2}\left[(1-2 x) f^{\prime}(x)+x(1-x) f^{\prime \prime}(x)\right] .
$$

Proof. In view of Taylor's theorem, as $\int^{\prime \prime}(x)$ exists at x,

$$
f(t)=f(x)+(t-x) f^{\prime}(x)+(t-x)^{2}\left[\frac{1}{2} f^{\prime \prime}(x)+\eta(t-x)\right]
$$

Received December 17, 1953; in revised form May 23, 1955. Presented to the American Mathematical Society, April, 1954.

