SUMMABILITY OF GENERALIZED BERNSTEIN POLYNOMIALS. I.

BY P. L. BUTZER

1. Introduction. If f(x) is Lebesgue integrable over the closed interval [0, 1] then the generalized Bernstein polynomials here considered are defined as

$$P'_n(x) = \sum_{\nu=0}^n (n+1) p_{\nu,n}(x) \int_{\nu/(n+1)}^{(\nu+1)/(n+1)} f(t) dt, \qquad n = 0, 1, 2, \cdots$$

where

$$p_{\nu,n}(x) = {\binom{n}{\nu}} x^{\nu} (1 - x)^{n-\nu}.$$

It is known that

(1)
$$\lim_{n \to \infty} P_n^f(x) = f(x)$$

almost everywhere in [0, 1], more precisely, at every point x where f(x) equals the derivative of its indefinite integral (see [5], [6] or [1]). Another property (see [1]) of the $P'_n(x)$ is that if $f(x) \in L^p[0, 1]$, p > 1, they converge dominatedly in the space L^p and hence also in the mean (of order p) to f(x).

These, among other properties, illustrate the analogy that exists between the polynomials $P'_n(x)$ and the Fejér means of the partial sums $S_n(x)$ of the Fourier series (c.f. [10]). Extending this parallelism, it seems reasonable to consider the polynomials

$$\mathfrak{P}_{n}^{f}(x) \equiv (n + 1)P_{n}^{f}(x) - nP_{n-1}^{f}(x)$$

which would correspond to the partial sums $S_n(x)$. More generally, the question of summability will be introduced. The behaviour of the Lagrange interpolation polynomials (see [8] or [2]), the trigonometric interpolating polynomials (see [11]), and the Legendre series for f(x) (see [4] or [7]) is somewhat similar to that of the $\mathfrak{P}_n^f(x)$.

2. Asymptotic relation for the $P_n^f(x)$. We first establish a useful asymptotic expansion for the $P_n^f(x)$.

THEOREM 1. If f(x) is defined in [0, 1], $|f(x)| \leq M$, then at every point $x \in [0, 1]$ where f''(x) exists,

$$\lim_{n \to \infty} (n+1)[P_n^f(x) - f(x)] = \frac{1}{2}[(1-2x)f'(x) + x(1-x)f''(x)].$$

Proof. In view of Taylor's theorem, as $\int''(x)$ exists at x,

$$f(t) = f(x) + (t - x)f'(x) + (t - x)^{2}[\frac{1}{2}f''(x) + \eta(t - x)]$$

Received December 17, 1953; in revised form May 23, 1955. Presented to the American Mathematical Society, April, 1954.