## NOTE ON THE CLASS NUMBER OF QUADRATIC FIELDS

By L. Carlitz

1. Let $d$ be the discriminant of the real quadratic field $R\left(d^{4}\right)$ and let $h(d)$ denote the class number of the field. If $p$ is an odd prime divisor of $d$, Ankeny, Artin and Chowla [1], [2] have found various expressions for the residue of $h(d)$ $(\bmod p)$. In particular for $d=p$, they have stated the following theorem ([1; Theorem 4]; for proof see [4]):

$$
\begin{equation*}
\frac{2 u}{t} h(p) \equiv \frac{A+B}{p} \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

where $A$ is the product of the quadratic residues of $p$ and $B$ is the product of non-residues of $p$ in the interval $1, p-1$; also $\epsilon=\left(t+u p^{\frac{3}{3}}\right) / 2$ is the fundamental unit of the field $(\epsilon>1)$.

We wish to show here how (1.1) can be extended to the general case. Put

$$
\begin{equation*}
p_{0}=(-1)^{(p-1) / 2} p, \quad d=p m=p_{0} m_{0}, \quad(m>1), \tag{1.2}
\end{equation*}
$$

and let ( $d / r$ ) denote the Kronecker symbol. It follows from (1.2) that

$$
\begin{equation*}
\left(\frac{d}{r}\right)=\left(\frac{p_{0}}{r}\right)\left(\frac{m_{0}}{r}\right)=\left(\frac{r}{p}\right)\left(\frac{m_{0}}{r}\right) . \tag{1.3}
\end{equation*}
$$

We now put

$$
\begin{equation*}
A=\prod_{a=1}^{d} a^{\left(m_{0} / a\right)}, \quad B=\prod_{b=1}^{d} b^{\left(m_{0} / b\right)} \tag{1.4}
\end{equation*}
$$

where in the first product $(a / p=1$ while in the second $(b / p)=-1$. Replace $a$ by $a+p r$, where now $a$ runs through the residues of $p$ in the interval $1, p-1$, then

$$
\begin{aligned}
A & =\prod_{a} \prod_{r=1}^{m}(a+p r)^{\left(m_{0} / a+p r\right)} \\
& \equiv \prod_{a} a^{\Sigma_{r}\left(m_{0} / a+p r\right)} \equiv 1 \quad(\bmod p)
\end{aligned}
$$

since for fixed, $a, a+p r$ runs through a complete residue system $(\bmod m)$. Thus $A \equiv B \equiv 1(\bmod p)$. We write (compare [5; Chapters 19, 20]

$$
\begin{equation*}
A=1+p \Omega, \quad B=1+p \Omega^{\prime} \tag{1.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
A^{p-1} \equiv 1-p \Omega, \quad B^{p-1} \equiv 1-p \Omega^{\prime} \quad\left(\bmod p^{2}\right) \tag{1.6}
\end{equation*}
$$

Received May 5, 1955.

