A NOTE ON POWER RESIDUES

By L. Carlitz

If p is a prime $\equiv 1(\bmod 4), h=h(p)$ the class number of the real quadratic field $R\left(p^{\frac{1}{2}}\right)$ and $\epsilon=\left(t+u p^{\frac{1}{2}}\right) / 2$ the fundamental unit of the field $(\epsilon>1)$, Ankeny, Artin and Chowla [1] have stated the following result:

$$
\begin{equation*}
2 u h / t \equiv(A+B) / p \quad(\bmod p) \tag{1}
\end{equation*}
$$

where A is the product of the quadratic residues of p and B is the product of the non-residues in the interval $1, p-1$. In [2] it is shown that (1) is a consequence of

$$
\begin{equation*}
u h / t \equiv B_{\frac{1}{2}(p-1)} \quad(\bmod p) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p}(A+B) \equiv 2 B_{\frac{1}{2}(p-1)} \quad(\bmod p) \tag{3}
\end{equation*}
$$

here B_{m} denotes a Bernoulli number in the even suffix notation.
In view of the above it may be of interest to consider the following problem. Let $p=k m+1$ denote a prime, $k>1, m>1$, and g a primitive $\operatorname{root}(\bmod p)$. The numbers $1, \cdots, p-1$ are separated into k classes C_{0}, \cdots, C_{k-1} each containing m numbers in the following manner. The number $a \in C_{i}$ provided

$$
\begin{equation*}
a \equiv g^{k_{8}+i} \quad(\bmod p) \tag{4}
\end{equation*}
$$

for some s. We then put

$$
\begin{equation*}
A_{i}=\prod_{a \varepsilon C_{i}} a \quad(i=0,1, \cdots, k-1) \tag{5}
\end{equation*}
$$

We also put

$$
\begin{equation*}
g^{m} \equiv w \tag{6}
\end{equation*}
$$

Now it follows from (4), (5) and (6) that

$$
A_{i} \equiv \prod_{s=0}^{m-1} g^{k s+i} \equiv g^{\frac{1}{2} k m(m-1)+m i} \equiv(-1)^{m-1} w^{i} \quad(\bmod p)
$$

We next put (compare [3; Chapter 19])

$$
\begin{equation*}
(-1)^{m} w^{-i} A_{i}=-1+p \Omega_{i} \tag{7}
\end{equation*}
$$

where Ω_{i} is integral $(\bmod p)$. Hence defining the Fermat quotient $q(r)$ by means of

$$
\begin{equation*}
q(r)=\frac{r^{p-1}-1}{p} \quad(p \nless r) \tag{8}
\end{equation*}
$$

Received May 5, 1955.

