A NOTE ON POWER RESIDUES

By L. CARLITZ

If p is a prime $\equiv 1 \pmod{4}$, h = h(p) the class number of the real quadratic field $R(p^{\frac{1}{2}})$ and $\epsilon = (t + up^{\frac{1}{2}})/2$ the fundamental unit of the field ($\epsilon > 1$), Ankeny, Artin and Chowla [1] have stated the following result:

(1)
$$2uh/t \equiv (A + B)/p \pmod{p},$$

where A is the product of the quadratic residues of p and B is the product of the non-residues in the interval 1, p - 1. In [2] it is shown that (1) is a consequence of

(2)
$$uh/t \equiv B_{\frac{1}{2}(p-1)} \pmod{p}$$

and

(3)
$$\frac{1}{p}(A + B) \equiv 2B_{\frac{1}{2}(p-1)} \pmod{p};$$

here B_m denotes a Bernoulli number in the even suffix notation.

In view of the above it may be of interest to consider the following problem. Let p = km + 1 denote a prime, k > 1, m > 1, and g a primitive root (mod p). The numbers 1, \cdots , p - 1 are separated into k classes C_0 , \cdots , C_{k-1} each containing m numbers in the following manner. The number $a \in C_i$ provided

for some s. We then put

(5)
$$A_i = \prod_{a \in C_i} a$$
 $(i = 0, 1, \cdots, k - 1)$

We also put

(6)

$$g^m \equiv w \pmod{p}$$

Now it follows from (4), (5) and (6) that

$$A_{i} \equiv \prod_{s=0}^{m-1} g^{k_{s+i}} \equiv g^{\frac{1}{2}km(m-1)+mi} \equiv (-1)^{m-1}w^{i} \pmod{p}$$

We next put (compare [3; Chapter 19])

(7) $(-1)^m w^{-i} A_i = -1 + p\Omega_i ,$

where Ω_i is integral (mod p). Hence defining the Fermat quotient q(r) by means of

(8)
$$q(r) = \frac{r^{p-1} - 1}{p}$$
 $(p \not\mid r),$

Received May 5, 1955.