POLYNOMIALS WHOSE ZEROS LIE ON THE UNIT CIRCLE

By P. Erdös, F. Herzog and G. Piranian

1. Introduction. Let

$$
\begin{equation*}
P(z)=\prod_{i=1}^{n}\left(1-z / \omega_{i}\right) \tag{1}
\end{equation*}
$$

where the points ω_{j} lie on the unit circle C. It has been shown by Cohen[1] that, on some path Γ which joins the origin to C, the inequality $|P|<1$ holds everywhere except at $z=0$. In an oral communication, C. Loewner has established the existence of a polynomial (1) for which every radius of the unit disc passes through a point at which $|P|>1$.

We will describe (see Theorem 1) a very simple example of a polynomial (1) with the property that on each radius of the unit disc there exist two points z^{\prime} and $z^{\prime \prime}$ such that $\left|P\left(z^{\prime}\right)\right|<1$ and $\left|P\left(z^{\prime \prime}\right)\right|>1$.

In connection with Theorem 1, the following question might be asked: Does there exist a universal constant L such that for every polynomial (1) the inequality $|P|<1$ holds on a path which connects the origin to C and has length at most L ? This question has recently been answered in the negative by G. R. MacLane [2].

Section 3 deals with the polynomials (1) in the cases $n \leq 4$. In these cases there always exist two half-lines from the origin on which

$$
\begin{equation*}
|P(z)| \leq\left|1-|z|^{n}\right| \quad \text { and } \quad|P(z)| \geq 1+|z|^{n} \tag{2}
\end{equation*}
$$

respectively. Here we point out the problem of determining the greatest degree n for which a polynomial (1) always satisfies the inequalities (2) on two appropriate radii of the unit disc or on two half-lines from the origin.
2. The example. The polynomial to be described is of the form

$$
\begin{equation*}
P(z)=\prod_{i=1}^{q}\left[1+\left(z / \omega_{i}\right)^{i}\right]^{k_{i}} \quad\left(\left|\omega_{i}\right|=1 ; j=1,2, \cdots, q\right) \tag{3}
\end{equation*}
$$

Roughly speaking, each factor determines a set of directions θ, of total range slightly less than π, such that on every radius in one of these directions $P(z)$ takes values of modulus greater than 1. The crucial problem in the construction is this, to choose the integers k_{j} in such a way that each factor bears the sole responsibility, on some circular arc concentric with the unit circle, of determining the signum of $\log |P(z)|$.

Let $A j$ be the set of all ω on C for which

$$
\begin{equation*}
-\pi / 3 \leq \arg \left(\omega / \omega_{i}\right)^{i} \leq \pi / 3, \quad \text { modulo } 2 \pi \tag{4}
\end{equation*}
$$

Received September 13, 1954; revision received January 8, 1955.

