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J. R. Kline has raised the question whether or not, for any positive integer
n greater than two, there exists a continuous curve such that, between each
pair of its points, there are exactly n simple arcs mutually exclusive except for
end points. For n equal to one and two the arc and the simple closed curve,
respectively, have this property. J.H. Kusner [2] has settled this question for
n equal to three or four. It is shown in Part I of this paper that for any integer
n greater than two no such curve exists. The final part of this paper answers
two questions raised by W. L. Ayres [1] concerning continuous curves containing
points of only two orders. P. Urysohn [3] has constructed examples of curves
of this type, namely, for any integer n greater than two a curve containing
points of orders n and 2n 2 only. G. T. Whyburn [5] has shown that if a
continuous curve contains points of only two orders, m and n, then m is greater
than or equal to 2n 2. Ayres conjectured that if m > n > 2 then (1) the
points of order m must be countable and (2) for some integer/c, m /(n 1).
Examples are given to show that neither of these conjectures is true.
The problems considered in this paper were suggested to me by Professor

J. R. Kline and I am indebted to him for his guidance of this work. I also wish
to acknowledge Professor R. D. Anderson’s guidance of the final stages of this
work.

PART I
THEOREM 1.1 For n an integer greater than two there exists no locally compact

continuous curve M such that each pair of points of M are the end points of exactly
n arcs mutually exclusive except for end points.

Proof. Suppose M is such a curve, then M has the following properties:
Property 1. Every pair of points can be separated by n points. This is an

immediate consequence of the Theorem [6]: If two points A and B of a locally
compact continuous curve M are separated in M by no n points, then there are
n 1 independent arcs from A to B.

Property 2. M is a regular curve. This is a direct consequence of the above.
M is therefore hereditarily locally connected and the local separating points
are everywhere dense.

Property 3. The boundary of every open set contains at least n points, thus
every point is of order at least n. If p is a point of M, U an open set containing p,
and q is a point which does not belong to U, then there exist n independent
arcs from p to q. Since F(U) separates M each arc must intersect F(U), there-
fore F(U) contains at least n points.
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