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In the work of Riemann, Rajchman, and Zygmund, an elegant theory of
localization for trigonometric series of a single variable has been achieved.
(See [7] for complete references.) In considering the corresponding problem
for two variables, one is faced with the problem, among other things, of choosing
a method of summability. Lepecki [3] and the second author [2] have con-
sidered the localization problem for series summed by Pringsheim methods
and have obtained results which involve cross-shaped neighborhoods, while
the first author [1] has obtained a localization theory which requires only the
ordinary type of neighborhood by using Bochner’s circular summation. How-
ever, difficulties arise in certain natural extensions of this work. For example,
V. Shapiro [5] has proved a localization theory using square summation which
fails for higher orders.

It is our aim in this paper to present a theory of localization for double trigo-
nometric series involving the usual type of neighborhood and using double
index summation methods. Our choice of method is that of restricted Riesz
summability with kernel (1 ).
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1. Notations and definitions. Following C. N. Moore [4], we say that
double sequence S.v converges to a limit L restrictedly, or in the restricted
sense, if for any fixed positive constants A and B there correspond to every
> 0 positive integers N. and M., with the property that SN -L <: for

all M > M and N > No whose ratio satisfies the inequality A <_ M’/N <_ B.
A double series ,._a is said to converge to L res?trictedly if the sequence

Mhrof partial sums SN does, where S .,;i--M.- a, Henceforth, when
considering double series whose limits of summation are =t= , we shall not bother
to put down the limits in cases where no confusion can result. Thus we shall
merely writea instead of ’:,._ a

Consider a sequence a,, where- < m < -t- and-
By the statement am o ((lm[ -t- 1) (] n % 1)) we mean the following:
first that there exists a constant K > 0 such that am -< K((
( n -t- 1)) for all m and n, and secondly that given an e > 0 there exist positive
integers mo and no such that a -< (( m -t- 1) * (I n -t- 1)) whenever
n >.noandm
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