CONGRUENCES FOR GENERALIZED BELL AND STIRLING NUMBERS

By L. CARLITZ

1. Introduction. E. T. Bell [3] has generalized the ordinary Stirling numbers. We may define the numbers S(c, r, s) by means of

(1.1)
$$E_0(uE_{s-1}(x)) = \sum_{r=1}^{\infty} \frac{x^r}{r!} \sum_{c=0}^r u^c S(c, r, s),$$

where $E_k(x)$ is defined recursively by means of

(1.2)
$$E_0(x) = e^x - 1, \quad E_k(x) = E_0(E_{k-1}(x)) \quad (k = 1, 2, \cdots).$$

The Bell numbers introduced in [2] may be defined by

(1.3)
$$E_s(x) = \sum_{r=1}^{\infty} \frac{x^r}{r!} B(r, s),$$

or what is the same thing

(1.4)
$$B(r, s) = \sum_{c=0}^{r} S(c, r, s).$$

The notation S(c, r, s) is due to Becker and Riordan [1]; c, r, s denote column, row and stack (or index), respectively.

In their paper Becker and Riordan derive interesting congruences for S(c, r, s)and B(r, s); special cases of these results have been proved by Bell, Marshall Hall [6] and Touchard [8]. In particular it is proved that for p prime, B(r, s), as a function of r, has period (mod p) equal to

(1.5)
$$p^{p^m} - 1$$
 $(p^{m-1} \le s < p^m),$

while S(c, r, s) has the period

(1.6)
$$q_m^i(q_m-1)$$
 $(p^{m-1} < s \le p^m, q_m^{i-1}p^s < c < q_m^ip^s),$

where $q_m = p^{p^m}$.

In the present paper we derive similar results (mod p^k). In particular we find that the period (mod p^k) of B(r, s) is (a divisor of)

(1.7)
$$p^{k-1}(p^{p^m}-1)$$
 $(p^{m-1} \le s < p^m);$

for s = 1, there is the slightly better period $p^k(p^p - 1)/(p - 1)$ corresponding to the known result $(p^p - 1)/(p - 1)$ in the case k = 1.

The method of proof used here is an elaboration of that of [5] and suggests the following generalization. Let $f(x) = \sum_{1}^{\infty} a_m x^m / m!$, where the a_m are rational integers, satisfy

(1.8)
$$f'(x) = 1 + \sum_{m=1}^{\infty} c_m f^m(x),$$

Received May 13, 1954.