## CONGRUENCES FOR GENERALIZED BELL AND STIRLING NUMBERS

By L. Carlitz

1. Introduction. E. T. Bell [3] has generalized the ordinary Stirling numbers. We may define the numbers $S(c, r, s)$ by means of

$$
\begin{equation*}
E_{0}\left(u E_{s-1}(x)\right)=\sum_{r=1}^{\infty} \frac{x^{r}}{r!} \sum_{c=0}^{r} u^{c} S(c, r, s), \tag{1.1}
\end{equation*}
$$

where $E_{k}(x)$ is defined recursively by means of

$$
\begin{equation*}
E_{0}(x)=e^{x}-1, \quad E_{k}(x)=E_{0}\left(E_{k-1}(x)\right) \quad(k=1,2, \cdots) . \tag{1.2}
\end{equation*}
$$

The Bell numbers introduced in [2] may be defined by

$$
\begin{equation*}
E_{s}(x)=\sum_{r=1}^{\infty} \frac{x^{r}}{r!} B(r, s) \tag{1.3}
\end{equation*}
$$

or what is the same thing

$$
\begin{equation*}
B(r, s)=\sum_{c=0}^{r} S(c, r, s) . \tag{1.4}
\end{equation*}
$$

The notation $S(c, r, s)$ is due to Becker and Riordan [1]; $c, r, s$ denote column, row and stack (or index), respectively.

In their paper Becker and Riordan derive interesting congruences for $S(c, r, s)$ and $B(r, s)$; special cases of these results have been proved by Bell, Marshall Hall [6] and Touchard [8]. In particular it is proved that for $p$ prime, $B(r, s)$, as a function of $r$, has period $(\bmod p)$ equal to

$$
p^{p^{m}}-1 \quad\left(p^{m-1} \leq s<p^{m}\right),
$$

while $S(c, r, s)$ has the period

$$
\begin{equation*}
q_{m}^{i}\left(q_{m}-1\right) \quad\left(p^{m-1}<s \leq p^{m}, q_{m}^{i-1} p^{s}<c<q_{m}^{i} p^{s}\right), \tag{1.6}
\end{equation*}
$$

where $q_{m}=p^{p^{m}}$.
In the present paper we derive similar results $\left(\bmod p^{k}\right)$. In particular we find that the period $\left(\bmod p^{k}\right)$ of $B(r, s)$ is (a divisor of)

$$
\begin{equation*}
p^{k-1}\left(p^{p^{m}}-1\right) \quad\left(p^{m-1} \leq s<p^{m}\right) ; \tag{1.7}
\end{equation*}
$$

for $s=1$, there is the slightly better period $p^{k}\left(p^{p}-1\right) /(p-1)$ corresponding to the known result $\left(p^{p}-1\right) /(p-1)$ in the case $k=1$.

The method of proof used here is an elaboration of that of [5] and suggests the following generalization. Let $f(x)=\sum_{1}^{\infty} a_{m} x^{m} / m!$, where the $a_{m}$ are rational integers, satisfy

$$
\begin{equation*}
f^{\prime}(x)=1+\sum_{m=1}^{\infty} c_{m} f^{m}(x) \tag{1.8}
\end{equation*}
$$

Received May 13, 1954.

