BOREL AND BANACH PROPERTIES OF METHODS OF SUMMATION

By G. G. Lorentz

1. Introduction. A special case of the strong law of large numbers is the result of Borel according to which, for almost all x in (0,1), the sequence of digits a_{n} of the dyadic expansion $x=0, a_{1} a_{2} \cdots a_{n} \cdots$ of x is C_{1}-summable to zero. Rademacher's functions $r_{n}(x)$ are connected with the a_{n} 's by means of the formula $r_{n}(x)=2 a_{n}-1$, hence Borel's theorem means that almost everywhere $C_{1}-\lim r_{n}(x)=0$. According to J. D. Hill [6], [7], a regular method of summation $A=\left(a_{m n}\right)$ has the Borel property (or $A \varepsilon B P$) if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} a_{m n} r_{n}(x)=0 \tag{1}
\end{equation*}
$$

We shall say that A has the Banach property, if

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sum_{n=1}^{\infty} a_{m n} \phi_{n}(x)=0 \tag{2}
\end{equation*}
$$

a.e.
for each normal orthogonal system $\phi_{n}(x)$ on (0,1). Banach [1] proved that (2) holds for $A=C_{1}$ and the present author [10] that (2) holds for $A=C_{\alpha}, \alpha>\frac{1}{2}$ and does not hold for $A=C_{1 / 2}$. Sufficient conditions and necessary conditions for a method A to have the Borel property have been given by Hill [6], [7]. We give here conditions of a different type (connected with some simple theorems on "summability functions" of a method A, developed by the author elsewhere [12], [13], [14]), which are expecially useful in the case when the coefficient $a_{m n}$ as a function of n shows some degree of regularity. For wide classes of methods, in particular for classes of Riesz and Abel methods, we obtain necessary and sufficient conditions.

Relation (1) can be discussed for a somewhat more general situation. We first recall some known definitions and properties of independent functions $r_{n}(x)$ (independent random variables in the language of Probability). Measurable sets E_{1}, E_{2}, \cdots on $(0,1)$ are called independent, if $m \bigcap_{k=1}^{n} E_{k}^{\prime}=\prod_{k=1}^{n} m E_{k}^{\prime}$, where each E_{k}^{\prime} is either E_{k} or its complement. Real measurable functions $f_{1}(x)$, $f_{2}(x), \cdots$ on $(0,1)$ are independent, if for any choice of measurable sets A_{1}, A_{2}, \cdots of the real line, the sets $\left[x: f_{n}(x) \varepsilon A_{n}\right], n=1,2, \cdots$ are independent. For example, Rademacher's functions $r_{n}(x)$ are independent. Also, if the $f_{1}(x)$, $f_{2}(x), \cdots$ are independent and N_{1}, N_{2}, \cdots denote disjoint subsets of the set N of natural numbers, and if all series $g_{n}(x)=\sum_{k e N_{n}} a_{n k} r_{k}(x)$ converge a.e., then also the functions $g_{1}(x), g_{2}(x), \cdots$ are independent.

[^0]
[^0]: Received December 28, 1953: revision received June 18, 1954. A considerable part of this work has been carried out while the author held a Fellowship at the 1952 Summer Institute of the Candian Mathematical Congress.

