
A GENERALIZATION OF PASCAL’S THEOREM.

BY O. Bow

In this journal, N. A. Court [3] has given a generalization of Pascal’s theorem
in three dimensional space. I-Ie therefore stated the theorem for the plane in
the following form: If the three pairs of sides of a triangle are cut by three
transversals, the six points of intersection lie on a conic, if, and only if, the three
transversals cut the respective third sides in three collinear points. The gen-
eralization is then given as follows" the four triads of points in which the four
triads of coterminous edges of a tetrahedron T are cut by four transversal
planes, respectively, lie on the same quadric, if and only if, the four secant
planes meet the faces of T opposite the respective vertices in four lines which
are either coplanar or hyperbolic. The proof as given by Court is short and to
the point, it makes use of geometrical reasoning only.

Court’s theorem was found long ago by Chasles [2; 400] and given by him
without proof in his classical Apergu. A demonstration may be read in Salmon’s
textbook [6; 141-142]. Some years ago, Kollros [4] published a further generali-
zation of the theorem--or at least of one part of itmto n-dimensional space.
In doing so, one has to consider what the extension in R. may be of three points
in a plane being collinear or four lines in space being (coplanar or) hyperbolic.
The natural generalization seems to be what is denoted by Kollros as espaces
associs and called by Italian geometers [1], [5] the Schtfli position of (n -b 1)
linear subspaces R_2 in Rn That position is defined by the property that
every line that meets n out of the n W 1 subspaces also meets the last one.
There is a simple way to express analytically that n 1 subspaces R_2 are in
Schl/fli position: necessary and sufficient for this is that the Plticker coordinates
of the subspaces are linearly dependent. (The theorem is an immediate con-
sequence of the fact that the condition for the intersection of a R_2 and a line
is bilinear in the Plticker coordinates of both.) Making use of it we not only
give a proof of Kollros’ theorem which is similar to his, but we are also able to
prove the converse theorem, which starts from the Schlfli position as a given
fact and has as a conclusion that the n(n - 1) points on the edges of the simplex
lie on a quadratic variety. We have added some remarks for the case n 3.

2. We consider in n-dimensional projective space a simplex A1A.... A+I
and a quadric Q, that intersects the edge AAk in two points denoted by Bk
and B, respectively. We "conjugate" B, to the vertex A and B to A,
Assuming that the quadric does not pass through any of the vertices the n
points BI B2 B./I conjugated to A are different one from another;
hence they determine a R,_, denoted by w. The (n 1) dimensional face of
the simplex opposite to A is called a w and a have a (n 2)-dimensional
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