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Introduction. In this paper we consider certain congruence subgroups of
the modular group G, and derive some theorems which point out their arith-
metical structure. Application of these theorems is then made to questions
concerning the existence and construction of rational bases for functions in-
variant with respect to the substitutions of these subgroups.

1. Preliminary remarks and definitions. G is the full modular group: i.e.,
the group of 2 2 matrices of determinant 1 with rational integral elements.
We set

S- 7’=
0

It is well-known that S and T are generators of G.

S T -I
0

We observe that

of G belongs to Go(n) if and only if n c. Notice that Go(l) G.
The class of functions that will be considered is the class of functions

with polar singularities at most in various uniformizing variables throughout
the upper r half-plane. The word ’function’ is to be understood ia this sense
in wht follows.
We will say that g is a function on the subgroup G1 of G if g is invariat with

respect to the substitutions of G1, regarded as linear fractional transformations.
We will also say that g is maximal on G if g is a function on G but is not a func-
tion on any subgroup Go of G properly containing G
We will say that the set of functions {gl g., g} is a rational basis for

the subgroup G of G if
(a) The functions gl g2, gn are functions on G
(b) Any function on G is a rational function of gl, g2, gn
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Go(n) is the subgroup of G defined as follows: The element


