CONGRUENCES FOR THE SOLUTIONS OF CERTAIN DIFFERENCE EQUATIONS OF THE SECOND ORDER

By L. Carlitz

1. Introduction. D. H. Lehmer [3] discussed the difference equation

$$
u_{n+1}=(a n+b) u_{n}+c u_{n-1},
$$

where u_{0}, u_{1}, a, b, c, are assigned integers. He proved in particular that, if m is an arbitrary positive integer and $(a, m)=1$, then

$$
u_{n+2 m} \equiv c^{m} u_{n} \quad(\bmod m)
$$

In the present paper we first extend this result in the following manner. It is convenient to take (1.1) in the "normal" form

$$
\begin{equation*}
u_{n+1}=n u_{n}+c u_{n-1} . \tag{1.3}
\end{equation*}
$$

Since $(a, m)=1$ and n is allowed to take on all integral values there is no real loss in generality in discussing (1.3); moreover we also assume $(c, m)=1$. Define

$$
\begin{equation*}
\Delta^{r} u_{n}=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} c^{m(r-s)} u_{n+2 s m} . \tag{1.4}
\end{equation*}
$$

Then we show that

$$
\begin{equation*}
\Delta^{2 r-1} u_{n} \equiv \Delta^{2 r} u_{n} \equiv 0 \quad\left(\bmod m^{r}\right) \tag{1.5}
\end{equation*}
$$

for $r \geq 1, m$ odd and all n; for even m the modulus is replaced by $2^{-r+1} m^{r}$.
We next consider certain non-homogeneous equations suggested by the ménage polynomial [2]

$$
\begin{equation*}
U_{n}(t)=\sum_{k=0}^{n} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)!(t-1)^{k} \tag{1.6}
\end{equation*}
$$

and the closely related polynomial

$$
\begin{equation*}
W_{n}(t)=\sum_{k=0}^{n}\binom{2 n-k+1}{k}(n-k)!(t-1)^{k} \tag{1.7}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
W_{n}=n W_{n-1}+(t-1)^{2} W_{n-2}+2(t-1)^{n} . \tag{1.8}
\end{equation*}
$$

In view of (1.3) and (1.8) we consider

$$
\begin{equation*}
u_{n+1}=n u_{n}+b c u_{n-1}+b^{n}+c^{n} \tag{1.9}
\end{equation*}
$$

with $u_{0}=0, u_{1}=1$. The symbols b, c denote either indeterminates or rational numbers such that b, c, b^{-1}, c^{-1} are integral $(\bmod m)$; also we assume that $b \equiv c$

Received October 27, 1953.

