THE TRANSLATION PATHOLOGY OF WIENER SPACE

By R. H. Cameron

1. Introduction. Translations in Wiener space have been studied by Cameron and Martin [4], Maruyama [10], R. E. Graves [2], and others, and it is known that measurability (but not measure) is preserved under translations by sufficiently smooth functions. This set of smooth functions, however, is a set of measure zero in the space, and it is natural to ask whether a larger class of functions-conceivably all or almost all functions in the space-give translations which preserve measurability. One of the purposes of this paper is to answer this question.

The space C with which we deal is the set of continuous functions $x(t)$ defined on the interval $I: 0 \leq t \leq 1$ and vanishing at $t=0$. Wiener's measure [12; 214-224] in the space is first given on a class of intervals, which are sets of $x \in C$ satisfying

$$
\alpha_{i}<x\left(t_{i}\right) \leq \beta_{i}, \quad(j=1, \cdots, n)
$$

where n is any positive integer and the t_{i} and α_{i}, β_{i} satisfy $0<t_{1}<t_{2}<\cdots$ $<t_{n} \leq 1$ and $-\infty \leq \alpha_{i} \leq \beta_{i} \leq \infty$ for $j=1,2, \cdots, n$. The measure of the interval (1) is given by

$$
\begin{align*}
\frac{1}{\left(\pi^{n} t_{1}\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-t_{n-1}\right)\right)^{\frac{1}{2}}} \int_{\alpha_{n}}^{\beta_{n}} \cdots \int_{\alpha_{1}}^{\beta_{1}} \exp \{ & -\frac{\xi_{1}^{2}}{t_{1}}-\frac{\left(\xi_{2}-\xi_{1}\right)^{2}}{t_{2}-t_{1}}-\cdots \\
& \left.-\frac{\left(\xi_{n}-\xi_{n-1}\right)^{2}}{t_{n}-t_{n-1}}\right\} d \xi_{1} \cdots d \xi_{n} \tag{2}
\end{align*}
$$

and this definition turns out to be consistent and leads to a totally finite measure on the σ-ring generated by the intervals; the measure of C being unity. We denote the completion of this measure by m_{w} and we call the sets on which it is defined, "Wiener measurable", (or simply " w-measurable").

As formula (2) suggests, this measure arose from probability considerations; actually from the work of Einstein on the distribution of Brownian motion particles [6]. The question naturally arises whether a simpler measure on the space C might be found which would be defined on all the w-measurable sets (and perhaps others) and would give positive measure to all w-measurable sets of positive measure (and perhaps others); i.e., a measure m satisfying $m_{w} \ll m$ on the w-measurable sets. This question is of course hard to answer because of the indefiniteness of the word "simpler", but at the present time the

Received October 8, 1953; presented to the American Mathematical Society, December, 1953.

