SETS OF CONVERGENCE OF ORDINARY DIRICHLET SERIES

GEORGE BRAUER

Herzog and Piranian [1] proved that if M is a set of type F_{\star} on the unit circle C then there exists a Taylor series which converges on M and diverges on C - M. In the following I shall prove the following analogue for ordinary Dirichlet series.

THEOREM. If α is any real number, and M is a set of type F_{σ} on the line L: $\sigma = \alpha$, where $s = \sigma + i\tau$, then there exists an ordinary Dirichlet series $\sum_{n=1}^{\infty} a_n n^{-\sigma}$ which converges on M and diverges on L - M.

Proof. If the theorem is proved for $\alpha = 0$, then it can easily be deduced for an arbitrary value of α . We shall therefore assume that L is the imaginary axis. If the set M is empty, then the series $\sum_{n=1}^{\infty} (1/n)n^{-\epsilon}$ has the desired properties. The series $\sum_{n=2}^{\infty} 1/(n \log^2 n)n^{-\epsilon}$ constitutes an example of an ordinary Dirichlet series which has L as its line of convergence and which converges at all points of L. It remains to deal with the case where M is neither empty nor equal to the entire τ -axis. In this case M may be written as the union of closed sets F_p $(p = 1, 2, \cdots)$, where $F_p \subseteq F_{p+1}$ and F_1 is non-empty. For each positive integer q let

$$\mu_{qm} = (-q + 2qm/4^{q})\pi \qquad (m = 0, 1, \dots, 4^{q}).$$

Let the set Λ_q consist of those points $i\mu_{qm}$ on L which satisfy one of the following conditions:

(1)

$$q\pi/2 < \Delta(i\mu_{am}, F_{a}), \quad q\pi/2^{2} < \Delta(i\mu_{am}, F_{a-1}) \leq q\pi/2,$$

$$q\pi/2^{3} < \Delta(i\mu_{am}, F_{a-2}) \leq q\pi/2^{2}, \quad \cdots, \quad q\pi/2^{a} < \Delta(i\mu_{am}, F_{1}) \leq q\pi/2^{a-1},$$

where $\Delta(s, F)$ denotes the distance between the point s and the set F. Suppose that k_{q} of the points $i\mu_{qm}$ are in Λ_{q} ; let them be denoted by $i\lambda_{qi}$ in accordance with the inequality

 $\lambda_{a1} < \lambda_{a2} < \lambda_{a3} < \cdots < \lambda_{aka}$

$$C_{q}(\tau) = 4^{-q} \exp \left[(-in_{q}/q)\tau \right] \sum_{j=1}^{k_{q}} \exp \left([-i(j-1)/q]\tau \right) \sum_{r=0}^{4^{q}-1} \exp \left[(-ir/q)(\tau - \lambda_{qj}) \right]$$
$$= \sum_{j=0}^{4^{q}k_{q}-1} a_{q,j} \exp \left([-i(n_{q} + j)/q]\tau \right).$$

The series

(2)
$$\sum_{q=1}^{\infty} C_q(\tau) = \sum_{q=1}^{\infty} \sum_{j=0}^{4^{q_k}q^{-1}} a_{q,j} \exp\left(\left[-i(n_q+j)/q\right]\tau\right)$$

constitutes a generalized Dirichlet series (i.e., a series $\sum_{n=1}^{\infty} a_n \exp[-\lambda_n s]$, where $\{\lambda_n\}$ is a sequence of real numbers tending monotonically to infinity), at least

Received November 16, 1953; in revised form, April 24, 1954. The author is indebted to Professor George Piranian for many helpful suggestions.