ENTIRE FUNCTIONS AS LIMITS OF POLYNOMIALS

By Jacob Korevaar

1. Introduction. Let R be a set of points in the complex z-plane. An R-polynomial is a polynomial whose zeros lie in R. We are interested in the class $C(R)$ of all R-functions, that is, the entire functions $f(z) \not \equiv 0$ which may be obtained as the limit of a sequence $\left\{f_{n}(z)\right\}$ of R-polynomials, the convergence being uniform in every bounded domain (UBD convergence).
The study of $C(R)$ is interesting only if R is an unbounded set. Clearly the limit of a UBD convergent sequence of R-functions belongs to $C(R)$. Thus $C(R) \equiv C(\bar{R})$ so that we may assume that R is closed. Let us consider the example where R is the half- $\operatorname{line} \operatorname{Re} z \geq 0, \operatorname{Im} z=0$. In this case $\exp (-\lambda z) \varepsilon C(R)$ for every real $\lambda>0$, for $\exp (-\lambda z)=\lim (1-\lambda z / n)^{n}$, where the convergence is uniform in every bounded domain. It is easy to show that in this case $C(R)$ is the class of the functions of the form

$$
e^{a+b z} z^{m} \prod_{p}\left(1-z / z_{p}\right),
$$

where b is real $\leq 0, m$ a non-negative integer, $z_{p}>0$ and $\sum 1 / z_{p}$ converges. This result is essentially due to Laguerre, who also considered the case where R consists of the entire real axis. Pólya investigated the case of an angle less than π, Pólya and Obrechkoff treated the case of a half-plane. Details of these investigations may be found in Obrechkoff's monograph on the subject [3].

In some previous papers ([1], [2]) I set the problem to investigate $C(R)$ for arbitrary unbounded closed sets R and obtained characterizations of $C(R)$ for "practically all" sets R. These characterizations involve certain relevant geometrical properties of R. An essential part is played by the asymptotic directions and the asymptotes of R, R^{2}, R^{3}, etc. (R^{2} denotes the set of all points z^{2} where $z \varepsilon R$, etc.). The case where R consists of an angle greater than π is interesting: in this case $C(R)$ consists of all entire functions $\not \equiv 0$ whose zeros lie in R. A set R with this property will be called regular. It was shown that a set R is certainly regular if the asymptotic directions of none of the sets $R^{i}(j=1,2, \cdots)$ lie in a (closed) half-plane.

However, various questions remained. Is it possible that $C(R)$ contains an entire function of infinite order if R is non-regular? The answer given in this paper is no. Again, is it possible that $C(R)$ contains entire functions of arbitrarily large finite order if R is non-regular? The answer to this question turns out to be no also. In other words, if R is not regular, then there is a finite least upper bound $\omega(R)$ to the orders ρ of the functions of $C(R)$.

[^0]
[^0]: Received July 3, 1953; presented at the Conference on Functions of a Complex Variable, Ann Arbor, Michigan, June 1953. This paper represents work which was supported in part by the Office of Naval Research.

