SOME THEOREMS ON BERNOULLI AND EULER NUMBERS
OF HIGHER ORDER

By L. Caruirz aAnp F. R. OLsonN

1. Introduction. Put

k o m
z _ x L _ pm
(1.1
2 k _ © Cf:) xm W
(e“—l—l) _,,,2.22'" m! € = Cu).
A well-known theorem of Glaisher [4; 325] asserts (in different notation) that
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where 1 < r < 3(p — 3) and p is a prime > 3. Nielsen [5; 338], also using
different notation, has proved that
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where again 1 < r < 4(p — 3). As for the C{¥ we have
{ 2 = pCyy  (mod p?)
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and
57 = —pCy_y  (mod p*)
(1.5)
sl = —@r + Dp’Cory (mod p°),

where now » > 1. The result (1.5) is due to Nielsen [5; 292]. The formulas
(1.2), (1.3), (1.4), (1.5) are proved in a uniform manner in [2].
Noérlund [6; Chapter 6] has defined more general numbers B [w,, «++ , wl,
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