A NOTE ON GENERALIZED DEDEKIND SUMS

By L. Carlitz

1. Introduction. Rademacher [3] has recently proved a three-term relation for the Dedekind sum

$$
\begin{equation*}
s(h, k)=\sum_{r(\bmod k)}\left(\left(\frac{r}{k}\right)\right)\left(\left(\frac{h r}{k}\right)\right), \tag{1.1}
\end{equation*}
$$

where

$$
((x))=\left\{\begin{array}{cl}
x-[x]-\frac{1}{2} & (x \neq \text { integer }) \\
0 & (x=\text { integer })
\end{array}\right.
$$

If a, b, c are positive integers such that $(a, b)=(b, c)=(c, a)=1$, and $a a^{\prime} \equiv 1$ $(\bmod b c), b b^{\prime} \equiv 1(\bmod c a), c c^{\prime} \equiv 1(\bmod a b)$, then

$$
\begin{equation*}
s\left(b c^{\prime}, a\right)+s\left(c a^{\prime}, b\right)+s\left(a b^{\prime}, c\right)=-\frac{1}{4}+\frac{1}{12}\left(\frac{a}{b c}+\frac{b}{c a}+\frac{c}{a b}\right) \tag{1.2}
\end{equation*}
$$

The method of proof is that of [1].
In the present note we consider a sum that generalizes (1.1). In order to simplify the final formulas we take

$$
\begin{equation*}
\left.f\left(\frac{r}{k}\right)=\frac{r}{k}-\left\lvert\, \frac{r}{k}\right.\right]-\frac{1}{2}+\frac{1}{2 k} \tag{1.3}
\end{equation*}
$$

and define

$$
\begin{equation*}
s_{n}\left(h_{1}, \cdots, h_{n} ; k\right)=\sum_{r_{1}, \ldots, r_{n}(\bmod k)} f\left(\frac{r_{1}}{k}\right) \cdots f\left(\frac{r_{n}}{k}\right) f\left(\frac{r_{1} h_{1}+\cdots+r_{n} h_{n}}{k}\right) \tag{1.4}
\end{equation*}
$$

for arbitrary $n \geq 1$; thus for $n=1$, (1.4) is essentially the same as (1.1). Then we show that the sum s_{n} satisfies an $(n+1)$-term relation and also an $(n+2)$ term relation. The latter includes (1.2) when $n=1$.
2. A polynomial identity. Let k_{1}, \cdots, k_{n} denote n positive integers that are relatively prime in pairs. Put

$$
\begin{equation*}
g_{i}(x)=\frac{x^{k_{i}}-1}{x-1} \quad(i=1,2, \cdots, n) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=\prod_{i=1}^{n} g_{i}(x), \quad g_{i}(x) G_{i}(x)=G(x) \tag{2.2}
\end{equation*}
$$

Received December 19, 1953.

