POWER SERIES AND PEANO CURVES

By A. C. Schaeffer

It is well known that there exist real continuous functions $F(\theta)$, $G(\theta)$ such that the curve $x + iy = F(\theta) + iG(\theta)$ fills a square. Such a locus is called a Peano curve. It is a surprising result of Salem and Zygmund [1] that a Peano curve may be the boundary values of a function which is regular in the unit circle. They defined a class of lacunary series

$$f(z) = \sum_{\nu=1}^{\infty} a_{\nu} z^{\lambda_{\nu}}$$

which are regular in |z| < 1, continuous in $|z| \leq 1$, and such that the values of $f(e^{i\theta})$ cover some square.

In the present note it is shown that there are non-constant functions f(z) regular in |z| < 1 and continuous in $|z| \leq 1$ such that f(z) takes on the unit circumference every value which it assumes in |z| < 1. As might be expected, the conditions imposed on f(z) to obtain this stronger property are more stringent than those used by Salem and Zygmund.

THEOREM. Let

$$f(z) = \sum_{\nu=1}^{\infty} a_{\nu} z^{\lambda_{\nu}} \qquad (a_1 \neq 0),$$

where $\sum |a_r|$ converges,

(2)
$$\left|\frac{a_{\nu+1}}{a_{\nu}}\right| \geq \rho > \frac{3}{4}, \quad \frac{\lambda_{\nu+1}}{\lambda_{\nu}} \geq \mu_{\nu}$$

and μ_1 , μ_2 , \cdots is an increasing sequence such that

(3)
$$\sum_{\nu=1}^{\infty} \frac{1}{(\mu_{\nu})^{1/2}} \le \frac{1}{10}$$

Then $f(e^{i\theta})$ takes every value which f(z) assumes in $|z| \leq 1$.

It is clear that the function f(z) thus defined is regular in |z| < 1 and continuous in $|z| \leq 1$. The gap condition stated in (3) is much more severe than in the usual gap theorem. It would be interesting to determine whether (3) can be replaced by a condition $\mu_r \geq \mu$ for some constant μ . The proof is elementary, but some preliminary results are obtained before turning to the theorem.

Let the hypotheses of the theorem be satisfied and define $s_0(\theta) = 0$,

$$s_n(\theta) = \sum_{\nu=1}^n a_{\nu} \exp(i\lambda_{\nu}\theta)$$
 $(n \ge 1).$

Received April 27, 1953. The results presented here represent work done under a contract with the Office of Naval Research.