MODULES WITH A GROUP OF OPERATORS

By D. G. HIGMAN

1. Let G be a group, Ω a set. For a subgroup S of G, let M_s denote the S- Ω -submodule induced by a given G- Ω -module M. Assuming that the index G:S is finite, we shall characterize those G- Ω -modules M such that M is a direct summand of every G- Ω -module H of which it is a G- Ω -submodule in such a way that M_s is a direct summand of H_s . In case S = 1 our result coincides with W. Gaschutz's generalization of Maschke's theorem [3]. Since, as we shall prove, the G- Ω -module M with the above property are precisely those such that the G- Ω -module induced by M_s contains a direct summand equivalent with M, our result contains a theorem of B. Eckmann [1], [2].

As an application we obtain that a representation submodule M of a representation module H for a finite group G in a field of prime characteristic p is a direct summand of H if and only if M_s is a direct summand of H_s with S a p-Sylow subgroup of G.

2. We shall call a module M a G- Ω -module if it admits the group G as a group of left operators and the set Ω as a set of right operators such that $g(u\omega) = (gu)\omega$, for all g in G, u in M and ω in Ω . If M and N are G- Ω -modules, we shall call Mequivalent to N, and write $M \simeq N$, if there exists a G- Ω -isomorphism of M onto N.

Let us choose once and for all a set L of left representatives for G over its subgroup S. Then each element g in G can be written uniquely as a product $g = g^+g_+$, with g^+ in L and g_+ in S. We assume that the index G:S is finite, so that L is a finite set. For simplicity we shall assume that $L \cap S = 1$, then for s in S, $s^+ = 1$, $s_+ = s$.

We denote by m^{d} the *G*- Ω -module induced by a given *S*- Ω -module *m*. The elements of m^{d} may be realized as the formal sums

$$\sum x \cdot u_x \qquad (u_x \text{ in } M)_y$$

where the summation is to extend over all x in L, with addition defined by

$$\sum x \cdot u_x + \sum x \cdot v_x = \sum x \cdot (u_x + v_x)$$

and with operators for G and Ω defined respectively by

$$g(\sum x \cdot u_x) = \sum (gx)^+ \cdot (gx)_+ u_x \qquad (g \text{ in } G)$$

and

$$(\sum x \cdot u_x)\omega = \sum x \cdot u_x\omega$$
 (ω in Ω).

Received May 30, 1953. The author is a National Research Fellow.