A THEOREM ON GENERALIZED CON JUGATE NETS IN PROJECTIVE n-SPACE

By P. O. Bell

A theorem proved in a recent paper by the author [1] is the following:
In a linear space S_{n} of $n(\geq 3)$ dimensions, let N_{x} be a conjugate (parametric) net. Let M, M^{\prime} be points on the u-, v-tangents at x of the net N_{x}, respectively, which describe two nets N_{M}, N_{M}, having the property that the tangent plane of $N_{M}\left(N_{M^{\prime}}\right)$ at $M\left(M^{\prime}\right)$ passes through $M^{\prime}(M)$. The nets $N_{M}, N_{M^{\prime}}$, are conjugate nets and each one of them is a Laplace transformed net of the other one.

Cartan [2] has studied r-dimensional varieties in S_{n} which sustian generalized conjugate nets. The purpose of the present paper is to extend the above stated theorem so that the result shall apply to the r-dimensional varieties of Cartan. The theorem stated above is the special case in which r is equal to 2 .

Before stating the theorem to be proved, it will be necessary to define the varieties of Cartan and to state a notable geometrical property of these varieties which generalizes a well-known property of conjugate nets of surfaces in S_{n}.

Let M_{0} denote a generic point of an analytic variety V_{0} of r dimensions in $S_{n}(r \leq n-1)$. Let the vertices of a local reference frame be points denoted by $M_{0}, M_{1}, \cdots, M_{n}$ of which $M_{1}, M_{2}, \cdots, M_{r}$ are located on the parametric $u^{1}, u^{2}, \cdots, u^{r}$ tangents to V_{0} at M_{0}, respectively. The general coordinates of the vertices satisfy a system of partial differential equations of the form

$$
\begin{equation*}
\frac{\partial M_{i}}{\partial u^{\alpha}}=\Gamma_{i \alpha}^{h} M_{h} \quad(\alpha=1,2, \cdots, r) \tag{1}
\end{equation*}
$$

in which (according to a convention to be adopted throughout the paper) the repeated Latin index in a term denotes summation of all such terms for the index values of the range $0,1,2, \cdots, n$, and in which by proper choice of proportionality factors for $M_{1}, M_{2}, \cdots, M_{n}$ the coefficients may be made to satisfy the relations

$$
\Gamma_{0 \alpha}^{j}=\delta_{\alpha}^{j}, \quad \Gamma_{0 \alpha}^{0} \neq 0 \quad(\alpha=1,2, \cdots, r ; j=1,2, \cdots, n) .
$$

A Greek index will usually have the range $1,2, \cdots, r$ except that in certain specified instances in the paper it will be restricted to a part of this range. A repeated Greek index will denote summation with respect to the indicated range except when a restriction is specified.

The net of quadric cones of vertex M_{0} defined by the equation

$$
\begin{equation*}
\left(\lambda_{r+1} \Gamma_{\alpha \beta}^{r+1}+\lambda_{r+2} \Gamma_{\alpha \beta}^{r+2}+\cdots+\lambda_{n} \Gamma_{\alpha \beta}^{n}\right) d u^{\alpha} d u^{\beta}=0 \tag{2}
\end{equation*}
$$

Received March 30, 1953. This paper was written at the University of California (Berkeley) while the author was a post-doctoral fellow of the National Science Foundation.

