A THEOREM ON GENERALIZED CONJUGATE NETS IN PROJECTIVE *n*-SPACE

BY P. O. Bell

A theorem proved in a recent paper by the author [1] is the following:

In a linear space S_n of $n (\geq 3)$ dimensions, let N_x be a conjugate (parametric) net. Let M, M' be points on the u-, v-tangents at x of the net N_x , respectively, which describe two nets N_M , $N_{M'}$ having the property that the tangent plane of $N_M (N_{M'})$ at M (M') passes through M' (M). The nets N_M , $N_{M'}$ are conjugate nets and each one of them is a Laplace transformed net of the other one.

Cartan [2] has studied r-dimensional varieties in S_n which sustian generalized conjugate nets. The purpose of the present paper is to extend the above stated theorem so that the result shall apply to the r-dimensional varieties of Cartan. The theorem stated above is the special case in which r is equal to 2.

Before stating the theorem to be proved, it will be necessary to define the varieties of Cartan and to state a notable geometrical property of these varieties which generalizes a well-known property of conjugate nets of surfaces in S_n .

Let M_0 denote a generic point of an analytic variety V_0 of r dimensions in $S_n(r \leq n-1)$. Let the vertices of a local reference frame be points denoted by M_0, M_1, \dots, M_n of which M_1, M_2, \dots, M_r are located on the parametric u^1, u^2, \dots, u^r tangents to V_0 at M_0 , respectively. The general coordinates of the vertices satisfy a system of partial differential equations of the form

(1)
$$\frac{\partial M_i}{\partial u^{\alpha}} = \Gamma^h_{i\,\alpha} M_h \qquad (\alpha = 1, \, 2, \, \cdots, \, r)$$

in which (according to a convention to be adopted throughout the paper) the repeated Latin index in a term denotes summation of all such terms for the index values of the range 0, 1, 2, \cdots , n, and in which by proper choice of proportionality factors for M_1 , M_2 , \cdots , M_n the coefficients may be made to satisfy the relations

$$\Gamma_{0\alpha}^{i} = \delta_{\alpha}^{i}, \qquad \Gamma_{0\alpha}^{0} \neq 0 \qquad (\alpha = 1, 2, \cdots, r; j = 1, 2, \cdots, n).$$

A Greek index will usually have the range $1, 2, \dots, r$ except that in certain specified instances in the paper it will be restricted to a part of this range. A repeated Greek index will denote summation with respect to the indicated range except when a restriction is specified.

The net of quadric cones of vertex M_0 defined by the equation

(2)
$$(\lambda_{r+1}\Gamma_{\alpha\beta}^{r+1} + \lambda_{r+2}\Gamma_{\alpha\beta}^{r+2} + \cdots + \lambda_n\Gamma_{\alpha\beta}^n) du^{\alpha} du^{\beta} = 0$$

Received March 30, 1953. This paper was written at the University of California (Berkeley) while the author was a post-doctoral fellow of the National Science Foundation.