THE LEBESGUE CONSTANTS FOR
EULER (E, p) SUMMATION OF FOURIER SERIES

By ArrHUR E. L1vINGSTON

1. Introduction. The regular Hausdorff method of summability H(g) associ-
ates with a given sequence {s.}% the means
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where ¢(t) is of bounded variation on the interval 0 < ¢t < 1, g(0+) = ¢(0),
and g(1) — ¢(0) = 1. The Lebesgue constant of order n for the method H(g)
is then defined to be
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where Im {w} denotes the imaginary part of the complex number w.

It is well known and easy to see that if L(n; g) — « as n — =, then there
is a continuous function f(y) whose Fourier series is not summable H(g) for at
least one value of y. It is therefore of some interest to know the asymptotic
behavior of L(n; g) asn — .

If g(¢) is the characteristic function E,(¢) of the closed interval r < ¢ < 1,
0 < r < 1, then the method H(E,) is ordinarily denoted by (E, (1 — r)/r)
and is said to be an Euler summability method. Lee Lorch has shown [1] that
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as © — «, where z is a continuous parameter and
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C being the Euler-Mascheroni constant.

It is the purpose of this note to show that

2. 2
®) Lin; E,) = 5 log T%r_r + A4 4+ e

for 0 < r < 1, where A is defined by (1) and ¢,(r) — 0 as n — . This will
be effected by showing that

L(n; E,) = L(nr/(1 — 1); Ey2) + o(1)
asn — o,
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