THE SUMMABILITY FACTORS OF INFINITE SERIES

By T. PATI

1.1. DEFINITIONS. Let $\sum a_n$ be a given infinite series. The series $\sum a_n$ is said to be absolutely summable (A), or summable | A |, if

$$F(x) = \sum a_n x^n$$

is convergent in $0 \le x < 1$, and F(x) is a function of bounded variation in (0, 1) [14], [18].

Let $s_n^0 = s_n$ denote the *n*-th partial sum of the series $\sum a_n$, and let s_n^k and t_n^k denote the *n*-th Cesàro-means of order k(k > -1) of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. The series $\sum a_n$ is said to be absolutely summable (C, k), or summable |C, k|, if the sequence $\{s_n^k\}$ is of bounded variation, that is to say, the infinite series

$$\sum \mid s_n^k - s_{n-1}^k \mid$$

is convergent [5], [11].

The series $\sum a_n$ is said to be strongly summable (C, k), or summable [C, k], (k > 0), to sum s, if

$$\sum_{\nu=1}^{n} |s_{\nu}^{k-1} - s| = o(n),$$

as $n \to \infty$ [19].

In what follows we shall require the following well-known identities for k > -1.

(1.11)
$$t_n^k = n(s_n^k - s_{n-1}^k)$$
 [11], [12];

(1.12)
$$t_n^{k+1} = (k+1)(s_n^k - s_n^{k+1})$$
 [7], [12];

(1.13)
$$t_n^k = \frac{1}{A_n^k} \sum_{\nu=1}^n A_{n-\nu}^{k-1} \nu a_{\nu} ,$$

where

(1.14)
$$A_n^k = \Gamma(n+k+1)/\{\Gamma(n+1)\Gamma(k+1)\} \sim n^k/\Gamma(k+1).$$

1.2. Let f(t) be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of f(t) is zero and

(1.21)
$$f(t) \sim \sum (a_n \cos nt + b_n \sin nt) = \sum c_n(t),$$

(1.22)
$$\int_{-\pi}^{\pi} f(t) dt = 0.$$

Received April 25, 1953.