THE SUMMABILITY FACTORS OF INFINITE SERIES

By T. Pati

1.1. Definitions. Let $\sum a_{n}$ be a given infinite series. The series $\sum a_{n}$ is said to be absolutely summable (A), or summable $|A|$, if

$$
F(x)=\sum a_{n} x^{n}
$$

is convergent in $0 \leq x<1$, and $F(x)$ is a function of bounded variation in $(0,1)$ [14], [18].
Let $s_{n}^{0}=s_{n}$ denote the n-th partial sum of the series $\sum a_{n}$, and let s_{n}^{k} and t_{n}^{k} denote the n-th Cesàro-means of order $k(k>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. The series $\sum a_{n}$ is said to be absolutely summable (C, k), or summable $|C, k|$, if the sequence $\left\{s_{n}^{k}\right\}$ is of bounded variation, that is to say, the infinite series

$$
\sum\left|s_{n}^{k}-s_{n-1}^{k}\right|
$$

is convergent [5], [11].
The series $\sum a_{n}$ is said to be strongly summable (C, k), or summable [C, $\left.k\right]$, ($k>0$), to $\operatorname{sum} s$, if

$$
\sum_{\nu=1}^{n}\left|s_{\nu}^{k-1}-s\right|=o(n)
$$

as $n \rightarrow \infty$ [19].
In what follows we shall require the following well-known identities for $k>-1$.

$$
\begin{align*}
t_{n}^{k} & =n\left(s_{n}^{k}-s_{n-1}^{k}\right) \quad[11],[12] ; \tag{1.11}\\
t_{n}^{k+1} & =(k+1)\left(s_{n}^{k}-s_{n}^{k+1}\right) \quad[7],[12] ; \tag{1.12}\\
t_{n}^{k} & =\frac{1}{A_{n}^{k}} \sum_{\nu=1}^{n} A_{n-\nu}^{k-1} \nu a_{\nu}, \tag{1.13}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{k}=\Gamma(n+k+1) /\{\Gamma(n+1) \Gamma(k+1)\} \sim n^{k} / \Gamma(k+1) \tag{1.14}
\end{equation*}
$$

1.2. Let $f(t)$ be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero and

$$
\begin{gather*}
f(t) \sim \sum\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum c_{n}(t) \tag{1.21}\\
\int_{-\pi}^{\pi} f(t) d t=0 \tag{1.22}
\end{gather*}
$$

Received April 25, 1953.

