THE SOLUTIONS OF THE EULER-POISSON-DARBOUX EQUATION FOR NEGATIVE VALUES OF THE PARAMETER

By E. K. Blum

1. Introduction. The hyperbolic differential equation

$$
E(k): \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}}-\frac{k}{t} \frac{\partial u}{\partial t}=0
$$

is referrde to as the Euler-Poisson-Darboux equation. The solution of a singular Cauchy problem for this equation for an arbitrary real value of the parameter k has been the subject of recent research. The uniqueness of such a solution for $k>0$ was established by Ásgeirsson [1] using the method of Zaremba [6]. For $k<0$, as Weinstein [3], [4] has pointed out, the solution is not unique. Accordingly, there is the problem of determining all solutions for a given negative k. This is the objective of the present paper.
2. Preliminary remarks. The Cauchy problem with which we are concerned can be formulated as follows. Let (B, C) be an open interval of the x-axis. Let T be a characteristic triangle in the (x, t)-plane formed by the closed segment $[B, C]$ and the characteristics which pass through points B and C. (Note that the characteristics are straight lines having slopes 1 and -1 .) For definiteness, we choose T to be the triangle having its third vertex, A, in the upper half-plane $(t>0)$. Further, let G be a region which contains at least the points in the interior of T as well as those on sides $A B$ and $A C$. However, G need not contain the points of the closed interval $[B, C]$.

A solution, $u^{(k)}$, of $E(k)$ is "regular in T " if there is a region G of the above type in which $u^{(k)}$ has continuous second derivatives. No stipulation is made about the behavior of the function or its derivatives on the interval $[B, C]$.

Finally, suppose $f(x)$ is an arbitrary function having continuous derivatives of sufficiently high order (to be specified precisely below) on the interval (B, C). By a solution of the Cauchy problem for $E(k)$ we mean a solution, $u^{(k)}(x, t)$, of the equation which is regular in T and such that (1) $\lim _{t \rightarrow 0^{+}} u^{(k)}(x, t)=f(x)$ and (2) $\lim _{t \rightarrow 0^{+}} u_{t}^{(k)}(x, t)=0$.

Before we consider the Cauchy problem for $k<0$, we shall obtain an integral representation of an arbitrary solution of $E(k)$. To do this we shall use two lemmas, the proofs of which are to be found in [2].

Lemma 2.1. If $u^{(k+2)}$ is a solution of $E(k+2)$ which is regular in T, then there is a solution $u^{(k)}$ of $E(k)$ which is also regular in T and such that $\partial u^{(k)} / \partial t=$ $t u^{(k+2)}$. Further, the third derivatives of $u^{(k)}$ are continuous in a region, G, of the kind described above.

Received April 17, 1953; in revised form, February 6, 1954.

