REFLEXITIVITY IN THE L^{λ} **FUNCTION SPACES**

By ISRAEL HALPERIN

1. Let S denote an arbitrary space of points P with a countably additive, non-negative measure $\gamma(E)$ defined for a complemented, countably additive family of sets. As is well known, for $1 the Banach space <math>L^p$ is reflexive; more generally, as shown by R. S. Phillips [5], for 1 and B an arbitrary $reflexive Banach space, the space <math>L^p(B)$ is reflexive.

The L^p are included among the L^{λ} spaces introduced and studied in [2], although the L^p are not typical of the more general L^{λ} (see [3]). Nevertheless an extension of Phillips' result does hold; in the present paper, using the results of [2], we shall prove:

THEOREM 1.1. The space $L^{\lambda}(B)$ is reflexive if and only if both L^{λ} and B are reflexive.

THEOREM 1.2. The space L^{λ} is reflexive if and only if the following conditions hold:

(1.1) Either S is coarse or the relations $\lambda(E) < \infty$, $e \subset E$, $\gamma(e) \to 0$ together imply $\lambda(e) \to 0$.

(1.1)* Either S is coarse or the relations $\lambda^*(E) < \infty$, $e \subset E$, $\gamma(e) \to 0$ together imply $\lambda^*(e) \to 0$.

(1.2) The finitely valued functions $f = \sum_{i} k_{e,i}$ with $\lambda(f)$ finite are dense in L^{λ} . (1.2)* The finitely valued functions $f = \sum_{i} k_{e,i}$ with $\lambda^{*}(f)$ finite are dense in $L^{\mu}(\mu = \lambda^{*})$.

(1.3) $\lambda^*(G) < \infty$ implies $G = G_E$ for some $E = e_1 + e_2 + \cdots$ with all $\lambda(e_i)$ finite.

 $(1.3)^* \lambda^{**}(G) < \infty$ implies that $G = G_E$ for some $E = e_1 + e_2 + \cdots$ with all $\lambda^*(e_i)$ finite.

(1.4) Every measurable function u(P) can be expressed as $u = u_1 + u_2$ with $\lambda^{**}(u) = \lambda^{**}(u_1) = \lambda(u_1)$ and $\lambda^{**}(u_2) = 0$.

Here we assume that the Banach space B contains at least one non-zero element and we use the following conventions: E denotes an arbitrary measurable set; the scalars may be the real or the complex numbers; for k an arbitrary scalar or element in B, the function on S with value k for all P is denoted as k = k(P); k_E denotes the function with value k for P ϵ E and value 0 for all other P; $k_{E,i}$ is an abbreviation for k_E when $k = k_i$ and $E = E_i$; $\lambda(E)$ is an

Received September 25, 1953.