NON-COMMUTATIVE CYCLIC FIELDS

By A. S. Amitsur

The structure of cyclic extensions of commutative fields was completely determined by the works of Artin-Schreier [4], A. A. Albert[1] (see also [2]) and Witt [17]. The object of the present paper is to extend these results to the non-commutative case. The case of quadratic extensions was recently dealt with by Dieudonné [6].

Throughout this paper we denote by $\mathfrak F$ and $\mathfrak C$ quasi-fields with centers Δ and Γ . We call $\mathfrak F$ a cyclic extension of $\mathfrak C$ (or $\mathfrak F$ is cyclically extended from $\mathfrak C$) if $\mathfrak F$ posses a cyclic group $\mathfrak G$ of n automorphisms with $\mathfrak C$ the set of all fixed elements, and $\mathfrak F$ is a right $\mathfrak C$ -module of dimension n (we use the notation $(\mathfrak F:\mathfrak C)_r=n$). The last requirement is superfluous for commutative fields $\mathfrak F$ or for groups of outer automorphisms (except the identity). But it is essential in developing the structure of non-commutative cyclic extensions as will be shown in §1 by an example which is due to the referee. A generally applicable condition that $(\mathfrak F:\mathfrak C)_r=n$ is given in [8].

The following are simple methods for obtaining cyclic extensions of quasifields.

- (1) Let $\alpha \in \mathfrak{F}$ satisfy an irreducible equation $x^n \beta = 0$ in Δ , then the inner automorphism: $a \to \alpha a \alpha^{-1}$ in \mathfrak{F} generates a cyclic group of automorphisms of \mathfrak{F} of order n. Let \mathfrak{C} be the centralizer of α in \mathfrak{F} , then by results of [5] ($\mathfrak{F}:\mathfrak{C}$), = $(\Delta(\alpha):\Delta) = n$ which means that \mathfrak{F} is a cyclic extension of order n of \mathfrak{C} . Furthermore, the results of [5] show that this is always the case if the group \mathfrak{G} contains only inner automorphisms. A situation of this type one meets in forming cyclic division algebras over Δ .
- (2) Let $\mathfrak{F} = \mathfrak{C} \times \Delta$ (over Γ), where Δ is now a commutative cyclic extension of Γ of the same order. Let \mathfrak{G} be a group of extensions (of the same order) of the automorphisms of Δ over Γ . By [7] it follows that this is always the case if $(\mathfrak{F}:\Delta) < \infty$. For another approach see [12] and [13].

We shall refer to extensions of the preceding types, or combinations of them as trivial extensions. Note that for non-trivial cyclic extensions $(\mathfrak{F}:\Delta)$ cannot be finite and the group \mathfrak{G} must contain some outer automorphisms. An example of a non-trivial cyclic extension was given by Köthe in [11; 24] (quoted in [7]); additional examples, for any n, of a different type will be given in §2.

As in the commutative case, the study of cyclic extensions must be carried out in a parallel fashion for quasi-fields of characteristic $p \neq 0$ with extensions of degree $n = p^e$, and for characteristic zero or extensions for which (n, p) = 1. The commutative extensions of degree p, in case of characteristic p, are obtained by adjoining a root of an irreducible equation of the type $x^p - x - a = 0$.

Received January 15, 1953; in revised form, April 18, 1953.