AN ELEMENTARY PROOF OF A THEOREM OF JACOBSON
By I. N. HERSTEIN

In his paper ‘“Structure theory for algebraic algebras of bounded degree” [3;
Theorem 11] Jacobson proved the following very striking and beautiful theorem:
let R be a ring such that for every x & R there exists an integer n(x) > 1, which
depends on w, such that x"® = x; then R is commutative. This result can be
regarded, in a very natural way, as a generalization of the theorem of Wedder-
burn which states that a finite division ring is a commutative field.

In this paper we give a proof of Jacobson’s theorem which rests strongly on
the Wedderburn theorem. This is all done in a completely elementary way.

The first half of the paper is devoted to the establishment of Jacobson’s
theorem for the case that the ring is a division ring K. The proof here falls
into two distinct parts:

(1) we show that if zaz™ = o’ in K, then ' = a and xa = az;

(2) using almost verbatim a simple and elegant argument due to Artin [1]
we characterize the situation where two elements of K satisfy the same minimal
polynomial over the center. From this we are able to exhibit an z and a in K
satisfying zax™* = a" # @ in case K should not be commutative.

The second half of the paper obtains an elementary reduction of the theorem
for general rings to the theorem for the division rings. Using the Jacobson
structure theory such a reduction can of course, be obtained quite handily.
(A simple reduction using subdirect sums and subdirectly irreducible rings is
given in a paper by Forsythe and McCoy [2].) However we avoid all such
structure theory here. (Z will always denote the center.)

1. In this section we assume that K is a division ring in which 2™
all x ¢ K. We begin with

= ¢ for

Lemma 1.1. K s of characteristic p = O.

For suppose " = z, 2x)™ = 2z, withn,m > 1. Lets = (n — 1)(m — 1) + 1.
Then z° = z, (22)" = 2¢ = 2°2° = 2'z. Hence (2° — 2)x = 0, proving the
lemma.

Let P C Z be the prime field of K. Thus P has p elements. Suppose that
for some z, a ¢ K, rax™' = a’. Let

n(a)—-2 n(z)—2

T={bsK[b= > D paa'r, pueP}-

=0 i=0
T is clearly a finite set. Moreover 7' is closed under addition. Since za = a’z, T
is also closed under multiplication. T is thus a finite subring of K. Since the
inverse of any element in K is a power of the element itself, every element of T'
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